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Abstract

We propose a multicountry quantile factor augmeneted vector autoregression
(QFAVAR) to model heterogeneities both across countries and across
characteristics of the distributions of macroeconomic time series. The presence of
quantile factors allows for summarizing these two heterogeneities in a
parsimonious way. We develop two algorithms for posterior inference that feature
varying level of trade-off between estimation precision and computational speed.
Using monthly data for the euro area, we establish the good empirical properties
of the QFAVAR as a tool for assessing the effects of global shocks on country-level
macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more
accurate compared to a FAVAR with symmetric Gaussian errors, as well as
univariate quantile autoregressions that ignore comovements among quantiles of
macroeconomic variables. We also illustrate how quantile impulse response
functions and quantile connectedness measures, resulting from the new model, can
be used to implement joint risk scenario analysis.
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1 Introduction

The so-called Great Recession of 2008-2009 marked the beginning of an era in which

global shocks are more pervasive, are able to generate domino effects, and can increase

macroeconomic risks to unprecedented levels. Recent evidence is provided by Adrian

et al. (2019) who find that the expected distribution of GDP growth skews left during

recessions. This skewness can change over time (Jensen et al., 2020) and is positively

related to macroeconomic volatility (Bekaert and Popov, 2019). Similar distributional

asymmetries occur for inflation (Korobilis, 2017; López-Salido and Loria, 2019), as for

numerous other economic and financial time series. Although some global risks – such as

global inflation and oil crises – are eerily familiar to economists, the current

unsustainable levels of debt, low growth, and the climate emergency create new

challenges for macroeconomic policy-makers. In the euro area, which shares common

monetary, regulatory, and other policies, measuring and monitoring the heterogeneous

performance of countries facing modern global risks is a particularly challenging

quantitative exercise. As an example, following the first response to the coronavirus

(Covid-19) health crisis, euro-area GDP was 4.9% below its prepandemic level in the

first quarter of 2021. Nevertheless, country-level performance was remarkably

heterogeneous, with Ireland reporting growth of 13.2% and Spain experiencing a

contraction of -9.3% (Muggenthaler et al., 2021).

In this paper we develop a novel quantile regression methodology to capture, in a

parsimonious and interpretable way, the heterogeneous responses of euro-area and

country-specific macroeconomic aggregates to global risks. Our approach builds on

combining the strengths of vector autoregressions (VARs) for structural inference, with

the flexibility of modeling individual percentiles of the data distribution of macro data

using quantile regression methods. The main challenge with modeling multivariate

quantiles is that different percentiles of different variables might be correlated, which is

not typically an issue in univariate quantile models (where each quantile level is

estimated independently).1 With just two macroeconomic variables (y1, y2) and three

quantile levels (q1, q2, q3), there are numerous ways any two quantiles of these variables

could be correlated. As a result, despite the fact that VAR modeling of the mean of

y1, y2 is a bivariate system, a quantile VAR would require specifying all six variables

y1(q1), y1(q2), y1(q3), y2(q1), y2(q2), y2(q3) as endogenous. When the interest is in modeling

1From another perspective, Adrian et al. (2021) argue that during crises the joint distribution of
economic and financial conditions becomes multimodal. Such multimodalities support the argument that
percentiles of joint distributions are not symmetrically correlated.
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quantiles of macroeconomic variables for many countries, VAR inference on quantiles

can quickly become high-dimensional, over-parameterized and, potentially,

computationally cumbersome.

We solve this modeling conundrum by specifying a quantile factor-augmented vector

autoregression (QFAVAR) that extends the popular factor-augmented VAR approach

outlined in Bernanke et al. (2005) and Stock and Watson (2005) to the quantile

regression setting. In a setting with several macro variables for several countries, we

extract variable-specific quantile factors for three percentiles of interest (10th, 50th, and

90th percentiles). As a result, the factors not only capture common dynamics across the

cross-section of the data (which is a key feature of multi-country factor studies such as

Kose et al. 2003), but also they are a parsimonious way of modeling cross-quantile

dependence among the original variables. The benefit is that, similar to the recent

methodologies in Chen et al. (2021) and Korobilis and Schröder (2022), the

macroeconomic variables load onto quantile factors independently for each quantile

level, allowing computational convenience and numerical stability. However, the

QFAVAR allows all quantile factors to be dynamically correlated for all percentile levels

by means of a joint VAR-state evolution.

Methodologically, the new QFAVAR adds novel features to various interconnected

literatures in macroeconometrics. We first build on established literature that uses

dynamic factor models (DFMs) to characterize comovements and heterogeneities among

different countries. Kose et al. (2003) use multicountry dynamic factor models to

measure the degree of synchronization of business cycles; Ciccarelli and Mojon (2010)

and Mumtaz and Surico (2012) use common factors to measure global inflation. A

common limitation of the traditional DFM/FAVAR approach is the reliance on the

normality assumption of common and idiosyncratic disturbances, which does not

sufficiently capture any asymmetries in higher moments of the empirical distribution of

macroeconomic data.2 Next, our proposal to estimate quantile factors and combine

these with VAR dynamics, adds a new tool to a recent literature that is otherwise

limited to specifying static quantile factors. Key papers include Ando and Bai (2020),

Chen et al. (2021), Clark et al. (2021), Korobilis and Schröder (2022), and Ma et al.

(2021). Finally, the QFAVAR adds to another emerging literature that combines

quantile regressions and VAR methods in order to identify the asymmetric effects of

2Papers such as Korobilis (2013) and Koop and Korobilis (2014) specify flexible FAVARs with time-
varying parameters and stochastic volatility; Gorodnichenko and Ng (2017) explicitly estimate mean and
volatility factors. Nevertheless, such factor model approaches are restricted to modeling flexibly only the
first two moments of the data distribution.
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various macroeconomic shocks. See for example Castelnuovo and Mori (2022), Forni

et al. (2021) and Loria et al. (2019). Although existing methodologies for estimating

quantile VARs (QVARs) can be empirically useful and relevant, they may rely on

simplifications that are context-specific.3 In contrast, the proposed QFAVAR approach

is general enough to be used in a multitude of other empirical problems where

asymmetric shocks are evident, for example, issues involving climate risks,

macroeconomic uncertainty, or financial shocks.

Our first contribution is to establish the workings of such a novel specification and to

show how it allows for parsimonious VAR inference for quantiles without sacrificing

flexibility and generality. The second contribution is to derive and test numerically

likelihood-based estimators for inference in the QFAVAR. In particular, we adopt

Bayesian methods and modern priors from the statistics and machine learning literature

that lead to tuning-free penalized estimation in high dimensions, and we derive two

algorithms for posterior inference. Our benchmark estimation is based on a Markov

chain Monte Carlo (MCMC) algorithm that is a generalization of the Gibbs samplers

proposed in Bernanke et al. (2005) and Kose et al. (2003). The second algorithm is

based on variational Bayes (VB) inference that extends the static quantile factor

estimator proposed in Korobilis and Schröder (2022); it provides a fast and convenient

approximation to the joint parameter posterior. By leveraging machine learning

methods, the second algorithm is particularly useful for applications where

computational time is especially important, as are frequent in policy work.

Our third contribution is empirical, as we apply the new tool to the problem of

assessing the effects of global risks to a series of euro-area macroeconomic variables. We

collect five macroeconomic variables for nine countries, namely inflation, industrial

production, the long-term interest rate, an index of economic sentiment, and an index

country-level financial stress. We extract quantile factors from each macro variable, by

aggregating over all nine countries, such that each quantile factor approximates the

distribution of the respective euro area aggregate. For example, the quantile factor

extracted from the nine country-level industrial production (IP) series captures the

quantiles of aggregate IP for the euro area. From a measurement perspective these

3For example, the Bayesian approaches in Mumtaz and Surico (2015) and Schüler (2020) might become
computationally cumbersome using the dimensions we consider in this paper. The contribution by Ando
et al. (2022) is restricted in that the covariance matrix is based on observed data, such that QVAR
estimation is implemented using univariate quantile regressions. Chavleishvili and Manganelli (2020)
present a bivariate quantile VAR that does not allow different quantiles of the two series to interact.
Finally, the setting in White et al. (2015), while useful for value-at-risk applications in finance, has
several limitations for structural macro inference.
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quantile factors are superior in capturing cross-sectional and distributional

heterogeneities, compared to fitting univariate quantile regressions directly to the euro

area aggregates, but allow insights into country-level heterogeneity at the same time.4

By definition the QFAVAR allows us to augment the quantile factors with (observed)

global factors, and we choose to include global measures of inflation, supply chain

pressures, financial conditions, and economic policy uncertainty.

The empirical facts can be summarized as follows. Quantile factor estimates of 10th,

50th and 90th percentiles are characterized by evident heterogeneity, implying

asymmetries in the distribution of unobserved factors. The QFAVAR is significantly

better to a FAVAR with symmetric Gaussian errors in forecasting the left and right tails

of the distribution of inflation and IP in the euro-area countries. This observation is

true, in particular, for the short, one-month-ahead horizon of both variables.

Additionally, we find that the QFAVAR is superior to univariate quantile autoregressive

models with or without exogenous global predictors, and the quantile dynamic factor

model (that is, a special case of the QFAVAR without any global variables). These

numerical results clearly show not only the benefits of adopting a multivariate approach

to quantile regression forecasting, but also that there are benefits from augmenting the

multi-country model with relevant global predictors. We illustrate, by means of quantile

impulse response functions, quantile forecast error variance decompositions, and quantile

connectedness graphs, that the QFAVAR captures a large variety of heterogeneities

across different quantiles of macroeconomic variables of interest. In doing so, we also

add to an open debate. Adrian et al. (2019) argue that financial conditions are an

important predictor of downside risks to GDP. Plagborg-Møller et al. (2020) question

the validity of this argument by providing detailed empirical evidence that no financial

time series is persistently informative in univariate quantile regressions. In contrast, we

find that (global) financial and economic conditions can be very informative for

country-level macro risks, once the potential linkages are modelled as a multivariate

system.

The next section describes the exact specification of the QFAVAR and how estimation

and inference can be tackled using Bayesian methods. As the QFAVAR is a new model

in the literature, Section 3 undertakes a battery of numerical exercises that establish its

usefulness for monitoring multi-country macroeconomic risks. Section 4 concludes the

4A univariate quantile regression fitted to euro-area IP will not capture correctly the distribution of
IP, especially in the tails. This is due to the lack of observations in the tails as well as the fact that IP
is measured with error. By combining the information in the IP series of multiple countries, we expect
the quantile factor to suffer less from these issues and provide superior estimates of the distributional
characteristics of aggregate IP.
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paper.

2 Econometric Methodology

Our starting point is the factor augmented vector autoregressive model from Bernanke

et al. (2005) and Stock and Watson (2005), adopted for a panel of several

macroeconomic time series for several countries. This modeling approach involves

extracting a smaller vector of latent factors from the large panel of macroeconomic data.

The latent factors evolve jointly with observed variables as a lower-dimensional vector

autoregression (VAR). This setting is established in macroeconomics, and the reader

should consult Stock and Watson (2016) for a thorough review. Here we explain a

conceptually straightforward extension of the FAVAR to the quantile setting, show how

this extension results in an inherently high-dimensional model, outline how Bayesian

inference can help tackle estimation challenges, and, finally, we show how the proposed

quantile specification can be deployed for traditional structural VAR analysis.

2.1 A multi-country quantile FAVAR (QFAVAR)

Let yijt denote macroeconomic/financial indicator i for country j observed at time t, for

i = 1, ...,m, j = 1, ..., n and t = 1, ..., T . We characterize the distribution of the mn ×
1 vector yt = [y11t, ..., y1nt, ..., ym1t, ..., ymnt]

′ by grouping its elements into unobserved,

indicator-specific factors f it,(q) for each quantile level q = q1, ..., qR, where qr ∈ (0, 1) and

qr−1 < qr. We also assume global-level factors summarized in the k× 1 vector of observed

variables gt. The quantile factor model strategy begins by specifying the qth conditional

quantile of yijt as a linear function of the global indicators and the indicator-specific factor,

which is of the form

Qq (yijt|gt) = cij(q) + γij(q)gt + λij(q)f
i
t,(q), (1)

where cij(q) is a scalar intercept, γij(q) is a 1 × k vector of loadings on the observed

global factors gt, and λij(q) is the scalar loading (weight) of the scalar, unobserved,

indicator-specific quantile factor f it,(q).
5 Following the probabilistic approach in Korobilis

and Schröder (2022) this quantile factor model can be represented as a parametric

5The fact that we extract indicator-specific factors, and we don’t just allow all variables to load on all
factors, helps with identification of the factor model. We only impose normalization restrictions, where
for the factor corresponding to quantile qr, we normalize the loading of the rth series to be one.
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regression of the form

yijt = cij(q) + γij(q)gt + λij(q)f
i
t,(q) + uijt(q), (2)

where uijt(q) ∼ AL
(
0, σ2

ij(q), q
)
is an asymmetric Laplace disturbance term; that is, it has

the functional form

f
(
uijt(q)

)
=

q(1− q)

σ2
ij(q)

e

[
(1−q)

uijt(q)

σ2
ij(q)

]
I(uijt(q) ≤ 0) + e

[
(−q)

uijt(q)

σ2
ij(q)

]
I(uijt(q) > 0)

 , (3)

with I denoting the indicator function. Similar to a Bayesian linear regression, where the

Gaussian residual is centred around zero, the asymmetric Laplace residual has the q-th

quantile equal to zero.

An important modeling feature of our approach is that the indicator-specific quantile

factors and the global factors are contemporaneously and dynamically correlated with

each other via a vector autoregressive (VAR) model with p lags. We define the mr × 1

vector Ft =
[
f 1
t(q1)

, ..., fmt(q1), f
1
t(q2)

, ..., fmt(q2), ..., f
1
t(qr)

, ..., fmt(qr)

]′
that summarizes all

unobserved factors at all quantile levels. The VAR(p) that characterizes the joint

dynamics of the quantile factors and the global factors is of the form[
Ft

gt

]
= v +Φ1

[
Ft−1

gt−1

]
+ ...+Φp

[
Ft−p

gt−p

]
+ εt, (4)

where v is an l × 1 vector of intercept terms, Φc are l × l matrices of autoregressive

coefficients for lagged term c = 1, ..., p, and εt ∼ N (0,Ω) is the disturbance term with Ω

an l × l full, symmetric and positive definite covariance matrix. Here, l = mr + k is the

joint dimension of the vectors Ft and gt. As a result, in contrast to Chen et al. (2021)

and Korobilis and Schröder (2022) who estimate factors independently for each quantile,

equation (4) allows for complex patterns of dynamic correlations among the quantiles to

affect the estimation outcomes of the quantile factors. At the same time, as we show

in subsection 2.3, this latter equation is important in order to perform structural VAR

inference using the QFAVAR. Finally, the model maintains its computational simplicity, as

the disturbances uijt(q) are independent from each other for all i, j, q. Therefore, equation

(2) is a collection of univariate quantile regressions that can be estimated independently

from one another. In contrast, the VAR of the state equation (4) can become quite large

when either considering many indicator-specific or global factors, or many quantile levels.

However, it is trivial to draw from an established literature on large Bayesian VARs
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in order to alleviate high-dimensionality concerns. In particular, we adopt the efficient

algorithm of Carriero et al. (2022). We next discuss likelihood-based inference in the

QFAVAR in detail.

2.2 Likelihood, priors, and posterior inference

The QFAVAR consists of seemingly disjointed equations (2) and (4). In order to write

them as a joint system and facilitate likelihood-based inference, we simplify our notation

by dropping intercepts and assuming one lag in the VAR part of the model. Under these

simplifications – and as shown in detail in appendix A – we can combine equations (2)

and (4) into the following linear state-space system[
Yt

gt

]
=

[
Λ Γ

0 I

][
Ft

gt

]
+

[
ut

0

]
, (5)[

Ft

gt

]
= Φ

[
Ft−1

gt−1

]
+ εt. (6)

In this matrix notation Yt is an nmr × 1 vector with the vector yt repeated r times;

Λ is an nmr × mr block diagonal matrix with the quantile-specific loadings λ(q) on its

diagonal; λ(q) in turn is an nm×m block-diagonal matrix with the factor-specific loading

λi(q) =
[
λi1(q), ..., λim(q)

]′
on its diagonal; and ut is an nmr × 1 vector of disturbances

with q-th element ut(q) =
[
u11t(q), ..., umnt(q)

]′
. The above equations define a state-space

model that characterizes the joint likelihood of the unobserved state variable [F ′t , g
′
t]
′ and

other latent parameters. Because this can become a high-dimensional system with many

parameters, we follow Bernanke et al. (2005) in part and adopt Bayesian inference as our

preferred likelihood-based approach.

The first reason for addressing estimation using Bayesian inference is the vast

availability of suitable prior distributions that provide automatic regularization to the

joint likelihood, especially when considering estimation of extreme quantiles where not

many observations are available. Following Feldkircher et al. (2022), Korobilis (2022)

and others, we specify the Horseshoe prior for sparse signals of Carvalho et al. (2010) for

the elements of the matrices Λ and Γ, as well as the elements of the VAR coefficients Φ.

For a generic b-dimensional vector of parameters θ (where θ represents column vectors

obtained from vectorizing the parameter matrices Λ,Γ,Φ, respectively) the Horseshoe

7



prior takes the form

θ|ξ,η ∼
b∏
i=1

N (0, ξηi) , (7)

ξ ∼ C+ (0, 1) , (8)

ηi ∼ C+ (0, 1) . (9)

Shrinkage estimators regularize an equivalent unrestricted estimator by means of a scalar

factor κ that determines how much the unrestricted estimator is shrunk towards zero.6 In

the case of the prior above, κ is Beta(0.5, 0.5) distributed, i.e. has a horseshoe shape. This

shape means that with smaller parameter spaces the posterior under a horseshoe prior

will tend to be unrestricted, but as the parameter space increases relative to the number

of observations, an increasingly larger amount of shrinkage towards zero is favored. These

properties make it ideal for our large dimensional parameter space. Both theoretically

and empirically the horseshoe performs well and it is a default automatic choice for many

researchers; see the detailed review of this literature in Korobilis and Shimizu (2022).

For the scalar asymmetric Laplace scale coefficients, σij(q), we specify conjugate inverse

gamma priors. Finally, the VAR covariance matrix Ω has an inverse Wishart prior.

Other than regularized estimation via prior distributions, the second reason for

choosing a Bayesian approach to inference is computational convenience. The

state-space model of equations (5)-(6) is linear but non-Gaussian because

ut ∼
∏

ijq AL(0, σij(q), q). Additionally, the presence of the quantile common component

ΛFt, which is a product of two high-dimensional unobserved quantities, complicates

state-space estimation further. However, estimation via the Gibbs sampler simplifies

inference, because conditional distributions in the QFAVAR have a simple form. As

discussed, the asymmetric Laplace distribution can be written as a mixture of Gaussian

distributions, converting the linear state-space model into conditionally normal form.

The parameters Λ and Ft can be sampled one at a time, conditional on one other.7 In

practice, our estimation strategy combines established ergodic samplers, and can be

outlined in the following steps:

1. Sample [F ′t , g
′
t]
′ conditional on values of all other system matrices from the state-

space model of equations (5)-(6). This step can be implemented using numerous

6In this case, the unrestricted estimator results from placing a normal prior on θ with infinite variance.
7While this approach induces high correlation of consecutive Monte Carlo samples of these parameters,

this issue can be easily alleviated by storing only every n-th posterior sample, for an appropriate choice
of n.
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approaches proposed in the literature, most notably the simulation smoother of

Carter and Kohn (1994).

2. Sample λij(q), γij(q), σij(q) (and cij, if an intercept is present) conditional on f it(q), for

each i, j, q, using equation (2). This is simply a univariate quantile regression, and

simple conditional posteriors are provided in Khare and Hobert (2012).

3. Sample Φ1, ...,Φp,Ω (and v, if an intercept is present), conditional on all quantile

factors Ft using equation (4). This is a simple Bayesian VAR, and posterior

conditionals are also quite standard, see Koop and Korobilis (2010).

Of course, in steps 2 and 3 one needs to account for the use of the Horseshoe hierarchical

prior, but this is also trivial to incorporate using the hierarchical formulation of this

prior proposed in Makalic and Schmidt (2016). The outcome is a Gibbs sampler that is

not much different to the sampler in Bernanke et al. (2005) for the FAVAR model and,

thus, has a simple and user-friendly structure. All our results using the Gibbs sampler

are based on 1,000,000 iterations after discarding an initial chain of 100,000 draws. Out

of the one million iterations we store every 100th draw, as consecutive draws tend to be

heavily autocorrelated.8 Therefore, all posterior inference (posterior means, variances etc)

is built on a remainder of 10,000 samples from the posterior distribution of parameters

and factors.

Finally, due to the fact that the dimension of the latent states Ft (quantile factors)

can be quite large, Gibbs sampling estimation tends to become computationally

cumbersome in certain applications of interest to policy-makers (for example, forecasting

macroeconomic risks). In order to address this issue, we also propose an approximate

two-step algorithm that replaces the factors with fast variational Bayes estimates from

the Korobilis and Schröder (2022) probabilistic quantile factor model. This use of

machine learning tools avoids the need for sampling using more demanding state-space

methods. Conditional on these plug-in estimates of the quantile factors, we can estimate

all other parameters (Λ,Φ etc) with a variety of methods depending on one’s needs. For

example, one could use MCMC as in steps 2) and 3) above, or variational Bayes, or even

ordinary least squares. In our implementation, for the sake of consistency, we also use

variational Bayes to obtain estimates of the parameter matrices. This two-step approach

ignores the dynamics of the factors and the dependence on the global variables gt in the

QFAVAR likelihood when producing estimates of Ft. However, it is justified on the basis

8This is not surprising for factor models, where loadings are sampled conditional on the factors and
vice-versa.
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of computational simplicity, and our empirical results suggest that there is no significant

information loss from this two-step procedure relative to the one-step Gibbs sampler.9 A

detailed overview and derivation of our proposed two-step procedure is provided in the

online supplement.

2.3 VAR inference in the QFAVAR

The QFAVAR implies a joint VAR for the r quantiles of country-level macroeconomic

variables yt and the mean (expectation) of the global variables gt. Here we follow

Bernanke et al. (2005), and Stock and Watson (2005) and we assume that the

idiosyncratic disturbances ut in equation (5) are not relevant for structural inference.

Indeed, as these disturbances in our model are cross-sectionally uncorrelated (they have

a diagonal covariance matrix), they can be treated as nuisance shocks (e.g. due to

measurement error or country-level effects). Therefore, εt are the true structural shocks

in the system. Given this convention, one can explicitly reduce the two-equation

QFAVAR into a one-equation VARMA model on [y′t, g
′
t]
′ and then show that the moving

average part vanishes asymptotically (thus, simplifying into a VAR model). However,

for simplicity we follow Bernanke et al. (2005) and Stock and Watson (2005) and pursue

a two-step alternative: first, we implement all VAR exercises of interest (conditional and

unconditional forecasting, impulse response analysis, historical decompositions, etc.)

using the VAR in equation (6), and then we project these quantities into the original

variables yt using the projection matrices Λ and Γ in equation (5). For example, using

standard formulas (Lütkepohl, 2005) the VAR in equation (6) can provide h-step-ahead

forecasts of
[
F ′t+h|t, g

′
t+h|t

]′
, for some h > 0, and these can be projected into forecasts for

yt using the formula yt+h|t = [Λ,Γ]
[
F ′t+h|t, g

′
t+h|t

]′
. Similar arguments can be made

about impulse response functions and other quantities of interest.

9Such two-step procedures are very popular in regular FAVARs. For example, both Bernanke et al.
(2005) and Stock andWatson (2005) suggest using principal components in a first step and then estimating
all system parameters using least squares. This two-step procedure provides a popular and asymptotically
consistent estimator (Stock and Watson, 2016). Proving a similar asymptotic result for our simple two-
step variational Bayes procedure would be useful, but is beyond the scope of this paper. However, the
probabilistic quantile factor analysis estimator in Korobilis and Schröder (2022) is numerically quite
similar to the quantile factor analysis estimator in Chen et al. (2021), which in turn is a generalization
of the principal components estimator to a quantile setting.
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3 Empirical evaluation of the QFAVAR

3.1 Euro-area macroeconomic indicators and global data

We use five macroeconomic variables from nine euro-area countries observed over the

sample 1996M1-2022M12. The countries, series, and sources are shown in the top panel

of Table 1. Three series come from the Statistical Data Warehouse (SDW) of the European

Central Bank. Industrial production is from the OECD data website, and the Economic

Sentiment Index is a composite index maintained by the DG ECFIN (and accessible from

the website of Eurostat, the main statistical agency in Europe). All series were accessed

in March 2023. Consumer prices are not seasonally adjusted, so we convert these to

year-on-year growth rates using the transformation 100(logPt+12 − logPt); we use the

same annual growth tranformation for the ESI in order to create a smoother series. IP

(which is seasonally adjusted) is converted to month-on-month growth rates using the

tranformation 100(logPt+1− logPt). Finally, LTIR and CLIFS are left observed in levels.

We neither undertake any additional seasonal adjustment, nor do we alter the series in

any other way (e.g., outlier adjustment).

Table 1: Euro-area and global indicators

Countries Macroeconomic Indicators Acronym Source

Austria (AT) Harmonized Index of Consumer Prices – Overall index HICP SDW1

Belgium (BE) Industrial Production Index – Total index IP OECD2

Germany (DE) Long Term Interest Rate LTIR SDW1

Spain (ES) Economic Sentiment Index ESI Eurostat3

Finland (FI) Country-Level Index of Financial Stress CLIFS SDW1

France (FR)

Italy (IT)

Netherlands (NL)

Portugal (PT)

Global indicators Acronym Source

Global inflation (OECD countries average) GINF OECD4

Global Supply Chain Pressure Index GSCPI NY Fed5

Chicago Fed National Financial Conditions Index FCI Chicago Fed6

Global Economic Policy Uncertainty GEPU EPU webpage7

1https://sdw.ecb.europa.eu/

2https://data.oecd.org/industry/industrial-production.htm

3https://ec.europa.eu/eurostat/databrowser/view/teibs010/default/table?lang=en

4https://data.oecd.org/price/inflation-cpi.htm

5https://www.newyorkfed.org/research/policy/gscpi#/overview

6https://www.chicagofed.org/research/data/nfci/current-data

7https://www.policyuncertainty.com/
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The global series include Global Inflation (GINF), the Global Supply Chain Pressure

Index (GSCPI), the Financial Conditions Index (FCI), and Global Economic Policy

Uncertainty (GEPU). The FCI is the national index for the United States, produced by

the Chicago Federal Reserve Bank; strictly speaking it is not a global average of

multiple countries (as is the case with the other three variables). However, this FCI is a

factor of over 100 financial time series, covering developments in stock, foreign exchange,

bond, and other key U.S. markets at the forefront of global financial activity. Therefore,

for euro-area countries in particular, the U.S. FCI can be a proxy for global financial

shocks. Global inflation is the month-on-month growth rate of the price index series. All

other variables are in levels. Sources and detailed definitions are in the bottom panel of

Table 1.

In the benchmark QFAVAR specification we extract one factor per group of country-

level macroeconomic indicators in Table 1, we focuses on quantiles q = 0.1, 0.5, 0.9, and we

set a maximum of p = 6 lags in the state equation of the model.10 Note, however, that one

can easily obtain special and restricted cases of our model. When Γ = 0 all global shocks

are only transmitted to country-level data via the quantile factors, making country-level

responses symmetric (because each macroeconomic indicator loads on a single factor per

quantile with weight λij(q)). If the global shocks are also restricted to be absent from the

state equation, the QFAVAR collapses to a quantile dynamic factor model for variables

yt. Because the Bayesian QFAVAR has a conditionally normal form and the mean of a

normal distribution is identical to its median, the QFAVAR can collapse into a FAVAR by

considering estimation only for q = 0.5. In practice, whenever we estimate the FAVAR as a

benchmark model we do so using algorithms similar to the QFAVAR. When forecasting in

subsubsection 3.3.1 we estimate the QFAVAR and the FAVAR with variational Bayes, and

when doing structural analysis in subsection 3.4 we estimate both models with MCMC.

Finally, as explained in subsection 2.2, the QFAVAR priors are automatic and adjust to

varying needs for shrinkage (depending on number of countries, indicators, lags, quantiles,

etc.) and we use the same priors whenever estimating the FAVAR as a benchmark for

comparison.

3.2 In-sample quantile factor estimates and model fit

It comes as no surprise that a large part of macroeconomic dynamics in the euroarea is

characterized by common drivers among countries. Nevertheless, our aim is to showcase

that considerable dynamics in the quantiles of macroeconomic variables remain hidden

10Recall that the horseshoe prior can flexibly restrict certain lagged parameters in a flexible way.
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when considering in-mean factors only. In addition, these dynamics are not only

interesting by themselves, but also imply strong and economically meaningful

heterogeneity in the transmission of economic shocks. Figures 1 and 2 depict the

estimated QFAVAR factors, using the one-step MCMC and two-step VB estimators,

respectively. In both cases, the quantile factor estimates plotted are defined as posterior

means of the 10th, 50th, and 90th percentile factors. For the sake of clarity the mean

(FAVAR) factors are not plotted in this figure, as these are fairly indistinguishable from

the median (50th percentile) factors. Therefore, median factors are a reference point

when comparing those to tail factors.

A first inspection of the two figures reveals that there are no marked differences

between the MCMC and VB estimates of the quantile factors, taking into account the

fact that the two estimators are based on different modeling assumptions.11 The VB

estimates of the 10th percentile factors sometimes cross with the median or even the

90th percentile (in the case of IP) factors, but such crossing or overlapping of quantile

factor estimates is not present when using MCMC. Because latent factors combine

distributional information from multiple series, some crossing might be present when

using algorithms that assume complete independence between quantiles (for example

Chen et al., 2021; Korobilis and Schröder, 2022). Therefore, the one-step estimation

performs better, possibly because it takes the correlation of the factors across quantiles

into account. At the same time, the numerical results suggest that the use of one-step

MCMC is essential in structural exercises where interpretation of the factors is

important. When interest is in forecasting, the factors only serve the role of being

reduced-form manifestations of the original data (even if they are not interpretable), in

which case VB estimates can be perfectly acceptable; see discussion of this issue in next

subsection.

11One-step MCMC estimation recovers the “true” dynamic factors implied by the QFAVAR
specification that are also contemporaneously and dynamically correlated with the globals, gt. Two-
step VB only estimates static factors as in Korobilis and Schröder (2022) with no reference to gt.
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Figure 1: Markov chain Monte Carlo estimates (posterior means) of the five euroarea
quantile factors (10th, 50th, and 90th percentiles).

Figure 2: Variational Bayes estimates (posterior means) of the five euro-area quantile
factors (10th, 50th, and 90th percentiles).

An interesting question is whether the quantile factors capture more information in the

data than the mean factors extracted with the simpler FAVAR method. To explore this
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question in depth, we provide an in-sample exercise in this section and a thorough out-of-

sample exercise in the next section. To formally investigate the additional informational

content of the quantile factors we follow Despois and Doz (ming) and computing factor

commonalities, defined as the R2 of the multivariate regression of yij onto the estimated

factors

R2
yij ,F̂

=
||F̂ (F̂ ′F̂ )−1F̂ ′yij||2

||yij||2
. (10)

In the above, F̂ is the posterior mean estimate of the mean factors from the FAVAR,

or the posterior mean of the rth quantile factor from the QFAVAR, where both models

are estimated using MCMC. Table 2 presents the results for the mean factors in the first

column. In the second and third column we then add the tail factors and the full set of

QFAVAR factors to the mean factor. For inflation, adding the tail factors consistently

increases the R2, where we observe the largest gains for Finland, the Netherlands, and

Portugal. Including the median factors increases the commonality further; performance

improves the most for Italy and the least for Portugal. For industrial production, the

general pattern is preserved. The R2 for Belgium, Finland, and the Netherlands increases

the most upon including the tail factors. Further small gains emerge from also including

the median factors; however, the gains are overall less sizeable compared to inflation.
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Table 2: Commonality of factor estimates

F F + F0.1 + F0.9 F + F0.1 + F0.5 + F0.9

HICP.AT 0.809 0.831 0.868

HICP.BE 0.853 0.860 0.881

HICP.DE 0.839 0.851 0.878

HICP.ES 0.931 0.942 0.961

HICP.FI 0.688 0.816 0.821

HICP.FR 0.939 0.945 0.952

HICP.IT 0.908 0.908 0.948

HICP.NL 0.635 0.776 0.804

HICP.PT 0.296 0.456 0.456

IP.AU 0.906 0.916 0.916

IP.BE 0.764 0.809 0.822

IP.DE 0.912 0.916 0.926

IP.ES 0.951 0.954 0.955

IP.FI 0.694 0.828 0.868

IP.FR 0.967 0.971 0.972

IP.IT 0.957 0.962 0.962

IP.NL 0.655 0.751 0.763

IP.PT 0.780 0.788 0.790

Notes: This table contains the factor commonality estimates for inflation and

industrial production for the set of the nine countries. The first columns shows

the results for the mean FAVAR factor; the second column shows the results for

the mean FAVAR and both QFAVAR tail factors; the final column shows the

results for the mean FAVAR and all QFAVAR factors.

3.3 Out-of-sample evaluation of tail risks

3.3.1 Is the QFAVAR better than a FAVAR in capturing tail risks?

In this subsection we shed more light onto the empirical fit of the QFAVAR, compared

to the more established FAVAR model. Although the comparison of in-sample fit of the

factors in the previous subsection (via R2 statistics) is an informative exercise, we draw

a more complete picture by comparing the out-of-sample performance of the QFAVAR

versus the FAVAR. Given then importance of accurate projections and forecasts in

policy work, this exercise is particularly insightful. We set up a straightforward recursive

pseudo-out-of-sample (poos) exercise where we begin the estimation with 50% of the

total sample, forecast one to 24 months ahead, add one more observation at the end of

the sample, estimate the models, and forecast again up to 24 horizons ahead. We
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compute forecasts iteratively using the VAR in state equation (6), and subsequently we

project them into forecasts for the conditional quantiles of the original variables yt using

the loadings matrices Λ and Γ in equation (5).

We follow Manzan (2015) and evaluate the tail forecasting performance using the

following quantile score function

QSt|t−h(q)
M = [yijt −Qq(yijt)] [I (yijt ≤ Qq(yijt))− q] . (11)

This score function is evaluated for the two competing models

M = {QFAV AR,FAV AR}; the two extreme quantile levels q = 0.1, 0.9; four forecast

horizons h = 1, 6, 12, 24; two variables of interest i = HICP, IP ; and all nine euro-area

countries j. The QS function is a piecewise linear asymmetric loss function; therefore

lower values signify better performance. Because we are interested in comparing the

performance of only two different classes of models, we again follow Manzan (2015) and

calculate the t-statistic testing the equality of the average of the models’ QS functions

over the whole out-of-sample period. This is defined as the spread between the QS

values of the QFAVAR versus the QS values of the FAVAR. Values of this statistic for

different variables and forecast horizons are shown in Table 3. The visibly higher

proportion of negative values implies that, overall, the QFAVAR experiences less

forecast performance loss in both the left and right tails of the distribution of HICP and

IP. For HICP, performance gains are statistically significant at the 5% level for h = 1 for

the bottom tail and for h = 1 and h = 6 for the top tail of the distribution. For a subset

of countries, additional significant gains also emerge for longer forecast horizons. For

industrial production the picture is generally comparable with the exception of some

countries; however, significant performance gains also arise for the bottom tail of the

distribution for the longer horizons h = 12 and h = 24. Generally, the QFAVAR

provides clear performance gains over the symmetric, Gaussian disturbances of the

FAVAR, highlighting the importance of flexible asymmetric modeling of conditional

quantiles within a multivariate setting.
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Table 3: T-statistics of equal quantile predictive accuracy

t− stat10 t− stat90

h = 1 h = 6 h = 12 h = 24 h = 1 h = 6 h = 12 h = 24

HICP.AT -3.04 -0.57 -2.34 -0.13 -5.98 -3.71 -2.52 0.12

HICP.BE -2.94 -0.61 -0.02 -0.81 -5.74 -3.01 -1.00 0.12

HICP.DE -2.40 -1.48 -2.39 -0.25 -5.91 -3.75 -1.63 -0.10

HICP.ES -3.30 -1.53 -1.68 -0.01 -5.14 -2.10 -0.63 0.73

HICP.FI -2.15 -1.54 -1.57 -2.42 -4.75 -3.29 -2.95 -0.71

HICP.FR -3.37 -1.20 -0.11 1.25 -6.87 -2.58 -1.44 -0.25

HICP.IT -3.65 -1.68 -0.67 0.35 -5.62 -3.23 -1.86 -0.40

HICP.NL -2.68 -2.56 -1.63 1.31 -2.44 -2.18 -1.94 0.11

HICP.PT -4.06 0.02 -1.07 -1.29 -4.37 -2.34 -0.35 0.76

IP.AT -2.11 -1.98 -1.92 -4.38 -7.24 -1.57 -0.63 -0.08

IP.BE -2.19 -2.77 -2.04 -3.57 -3.67 -2.36 -0.73 -1.07

IP.DE -1.62 -1.31 -2.40 -3.77 -1.88 -1.28 -0.04 -2.44

IP.ES -2.06 -1.90 -3.67 -3.34 -3.66 -0.77 1.80 1.08

IP.FI -2.79 -2.48 -3.82 -5.70 -2.90 -1.71 1.35 -1.87

IP.FR -0.93 -1.34 -1.90 -2.78 -4.59 -0.05 1.98 0.55

IP.IT -0.92 -1.82 -2.31 -2.74 -1.27 -0.18 1.25 -0.47

IP.NL -2.24 -3.02 -2.04 -5.22 -2.54 -0.72 1.04 0.22

IP.PT -0.74 -1.11 -2.25 -2.02 -5.45 -1.88 -1.69 -1.88

Notes. Entries in this table are t-statistic values for the null hypothesis of equal accuracy of the

quantile forecasts from the QFAVAR relative to the FAVAR benchmark. Columns 2-5 show

the statistics for 10th percentile forecasts over forecast horizons h = 1, 6, 12, 24 months, and

columns 6-9 show the statistics for the 90th percentile forecasts over the same forecast horizons.

Because all values of the statistic are negative, this shows that the QFAVAR experiences less

forecast loss than the benchmark FAVAR. Values lower than the critical value of -2 indicate

that QFAVAR tail forecasts are significantly better than the FAVAR forecasts at the 5% level.

Admittedly, evaluating only a certain area (left or right tail) of the distribution of

inflation and output is of paramount importance to policy-makers who are interested in

assessing worst-case scenarios for these two variables of interest. However, many times

the full forecast distribution of the variables of interest is required, most notably when

preparing fan charts similar to the ones maintained by the Bank of England (Britton et al.,

1998). In such cases, one has to construct the full forecast distribution by interpolating

forecasts of a wide range of quantiles. This procedure would not be accurate with the

benchmark specification of the QFAVAR, where for parsimony we focus only on the 10th,
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50th, and 90th percentiles. For that reason, the model can be trivially extended to

consider joint estimation of a larger number of quantiles. Following Chen et al. (2021) we

re-estimate the QFAVAR model this time for q = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95.

This implies R = 7 and the dimension of the state now increases to Rm+k = 7× 5+4 =

39 elements for each time period t. Nevertheless, computational load doesn’t increase

noticeably when adopting the two-step variational Bayes algorithm.12

Figures 3 and 4 illustrate the one-step-ahead predictive distributions of country-level

inflation and industrial production, constructed from the QFAVAR (blue solid line) versus

the FAVAR (red dashed line) estimated using the full sample up to December 2021. The

date is chosen as it marks the beginning of an era of rapidly increasing food and energy

prices, as well as shortages of raw materials and other frictions in production and global

trade resulting from the Covid-19 pandemic. The yellow vertical line indicates the realized

value in January 2022. We construct these densities by first predicting the one-step-

ahead value of each variable for each of the R = 7 quantiles and then fitting a Gaussian

kernel smoother to these quantiles.13 Based on these two figures it is clear that there are

significant differences between the two modeling approaches. Compared to the symmetric

FAVAR distributions, the QFAVAR features asymmetric and, in many cases, bimodal

distributions. In addition, the QFAVAR distributions place more probability mass on the

right tail of inflation and are left-skewed in case of industrial production. The FAVAR

distributions look, by and large, like symmetric weighted averages of the more complex

QFAVAR distributions, hiding the true extent of uncertainty around forecasts produced in

December 2021. The last few months of 2021 signalled a period of inflationary pressures,

and policy-makers faced huge uncertainty deciding whether these pressures would prove

transitory or more pervasive. With the advent of the Russian invasion of Ukraine in early

2022, it was clear that food and energy inflation would persist and prospects for positive

output growth could be dim due to subsequent interest rate increases and the build-up

of financial risk. Given ex-post knowledge of these extreme realized macro risks, it is not

surprising that forecast distributions of inflation and industrial production constructed

from the QFAVAR look more plausible than the symmetric FAVAR distributions.

12This is not true for the one-step MCMC algorithm, as increasing the dimension of the state variable
would increase the computational demands of the filtering problem substantially. Additionally, the one-
step estimator requires writing the VAR(p) evolution in the state equation into a VAR(1) form, which
requires repeatedly sampling a state vector that is even larger; that is, a vector with p(Rm + k) = 234
elements for p = 6.

13This is done using the MATLAB R2022b function ksdensity with default settings.
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Figure 3: One-step-ahead forecast distributions of inflation from QFAVAR (blue line) and
the FAVAR (red line), both estimated using variational Bayes using a finer grid of quantiles
(q = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95) compared to the benchmark specifications.
The yellow vertical line indicates the realized value in January 2022.

Figure 4: One-step-ahead forecast distributions of industrial production from QFAVAR
(blue line) and the FAVAR (red line), both estimated using variational Bayes using a finer
grid of quantiles (q = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95) compared to the benchmark
specifications. The yellow vertical line indicates the realized value in January 2022.

3.3.2 Are global variables relevant for forecasting tail risk?

With multiple global shocks affecting the euro-area, it is unclear how these transmit to

country-level risks of inflation and industrial production (Panetta, 2023). Understanding

the underlying transmission channels of such global predictors is an important issue for

policy-makers. A good starting point towards this direction is the related debate on
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whether financial predictors affect the left quantile of GDP. Despite the fact that

(Adrian et al., 2019) find that financial conditions help forecast the left tail of U.S.

GDP, Plagborg-Møller et al. (2020) argue that no single financial predictor is

persistently important for forecasting recessions. Their argument is based on the finding

that the relationship between GDP and financial conditions is inherently unstable over

time. This finding suggests that policy makers should not mechanically include financial

conditions as predictors of tail events.

A major limitation of Adrian et al. (2019) and Plagborg-Møller et al. (2020) is that

they rely on univariate quantile regressions; therefore, predictors enter in the form of

right-hand-side exogenous variables for each quantile level. This is not the case with the

proposed QFAVAR specification, where all estimated conditional quantiles of euro-area

macroeconomic variables and the global predictors are endogenous and can interact both

contemporaneously and dynamically. In order to explore the effects of global predictors

on country-level macro risks, we estimate and forecast with four models: i) our benchmark

QFAVAR, ii) a QDFM, which is the QFAVAR with quantile factors only and no global

variables gt, iii) a quantile autoregressive (QAR) model, and iv) a quantile autoregressive

model with global variables gt as predictors (QAR-X). To eliminate the impact of the

shrinkage priors in driving forecast performance, we estimate all four models with the

parsimonious choice of p = 1 lag and an intercept, deviating from the remainder of the

pager where we use p = 6 and an intercept.14 Finally, also for the sake of consistency we

estimate the two univariate quantile models using the same variational Bayes algorithm,

despite the fact that MCMC is not cumbersome in this case (see for example the fast

algorithm in Korobilis et al., 2021).

Figure 5 plots the cumulative quantile score values for inflation and industrial

production, respectively, computed using equation (11) in the previous subsection.

Compared to average quantile scores, cumulative sums reflect the evolution of forecast

performance of different models over the out-of-sample period. Given that the

QSt|t−h(q)
M statistic is a loss function, the best model is the one with the lower

cumulative values. The figure has four rows of nine panels, where the first two rows

correspond to the QS performance at the 10th and 90th percentile of inflation at horizon

h = 1 and the columns correspond to the individual euro-area countries. The third and

fourth row present the corresponding results for industrial production. Interesting

patterns emerge from this graph. At first glance, it is obvious that for the short forecast

horizon h = 1, multivariate quantile models are superior to univariate quantile models in

14In many macroeconomic forecasting problems, longer lag lengths fit very well in-sample, but when it
comes to forecasting out-of-sample the choices p = 1 or p = 2 are hard to beat.
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producing accurate left- and right-tail forecasts of inflation. In particular, the QFAVAR

dominates all other models, and in many cases the largest reductions in loss are early in

the out-of-sample period, that is, during the 2011 eurozone debt crisis.15 This is not a

surprising result, as it is well-known that the debt crisis created strong comovements

and global economic unrest. The multivariate QFAVAR is able to fit this period better

than the univariate competitors and the QDFM.

Figure 5: Cumulative quantile score (QS) loss for forecast horizon h = 1. We compare
four models: QAR (yellow circled line), QAR-X (purple dashed line), QDFM (red dotted
line), and QFAVAR (blue solid line). The out-of-sample evaluation period shown on the
x-axis is 2011Jan to 2022Dec-h. The first two rows show quantile scores for the 10th and
90th percentiles of inflation, and the third and fourth rows show quantile scores for the
10th and 90th percentiles of industrial production.

Looking more closely at the results, we can infer several stylized facts regarding

short-term quantile forecasting. First, global predictors seem to provide irrelevant

information when considering univariate forecasting models, but this is not true when

considering multivariate models. This stylized fact shows that the conclusions of

Plagborg-Møller et al. (2020) might only apply to univariate quantile models. Second,

among the multivariate models, the QFAVAR is clearly superior to the QDFM that does

15See for example, the 10th percentile QS of HICP.IT, and the 10th percentile QS of IP.ES.
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not consider global predictors. Third, inflation comovements in multivariate data seem

to be important, because both the QFAVAR and QDFM markedly improve the

performance of the univariate models. Finally, for industrial production, the QDFM

provides identical forecast performance to the univariate models in most cases. The

large improvements observed for the QFAVAR therefore likely come from the inclusion

of global predictors as endogenous variables.

Moving to longer-term forecasts, this clear picture is lost as there is no clear winner.

The only pattern that emerges is that the quantile AR(1) without global predictors is

always the worst-performing model. Overall, at longer horizons both the QFAVAR and

QDFM and the quantile AR with exogenous predictors performs very well. Figures

supporting these results are available among the additional empirical results in the

online supplement.

3.4 Evaluating global spillovers using the QFAVAR

3.4.1 Quantile factor responses

We compute generalized impulse response functions16 of the FAVAR and QFAVAR

factors to changes in global inflation, the global supply chain pressure index, financial

conditions, and global economic policy uncertainty. While factors from these models are

unobserved, in the case of multi-country analysis the indicator-specific factors we

estimate by averaging the same series for all nine countries, can be thought of as

proxying aggregate euroarea indicators. Therefore, responses of mean (in the FAVAR)

and quantile (in the QFAVAR) factors of HICP, IP, LTIR, ESI and CLIFS to global

shocks are particularly interesting to policy-makers interested in characterizing

aggregate-level dynamics instead of country-level heterogeneities. The FAVAR and

QFAVAR impulse response functions (IRFs) are presented in figures 6 and 7,

respectively. Note that quantile IRFs can be interpreted in two ways. On one hand, the

16There are numerous ways of turning a reduced-form VAR model into a structural econometric model
by means of imposing sensible and plausible identification restrictions. These identification schemes range
from recursive and long-run restrictions, to the currently popular methodologies of sign restrictions and
identification via instrumental variables. However, the QFAVAR has the particularity that it models
different quantiles of the same variables jointly. A global shock will not necessarily have the same effect
on all quantiles of a given variable. Even if economic theory, intuition or common sense are available
to help choose identification restrictions in VARs, these restrictions will hold on average (that is, in the
median) and there are no guarantees that structural relationships remain the same during “exceptional
times” (that is, at the tails of a distribution). Therefore, the QFAVAR requires careful consideration of
plausible restrictions that would help identify structural shocks. We leave this exercise for future research,
and in this paper we focus exclusively on generalized impulse response functions that require minimal
assumptions about signs, magnitudes or other important features of shocks.
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factor responses reflect features of the same distribution. Consequently, responses of

quantile factors suggest changes in skewness and kurtosis, as well as upside and

downside risks. If the quantile responses overlap completely, this is indicative of a level

shift in the entire distribution. On the other hand, one can interpret the responses as

distinct quantities, through the lens of scenario analysis. In this case, depending on the

interpretation of the underlying variables, the 10th (90th) percentile factor can be

interpreted as an adverse (favorable) benchmark scenario and, hence, contribute

important additional information beyond the median IRFs. As a result, both

interpretations provide useful supplements to existing models in the policy-making

process.

Figure 6: Impulse response functions (posterior median and 68% bands) of mean factors
to shocks in the global variables, based on the benchmark FAVAR specification. Each
row represents a global shock (GINF, GSCPI, FCI, GEPU); the own-response is shown
in the last column. The first five columns show the responses of the five factors extracted
from country-level euro-area data.

In the FAVAR responses, shown in Figure 6, an increase in global inflation coincides

with a positive impact response for all five factors. Given that we compute generalized

IRFs, global inflation might largely be driven by demand-side forces. The profile of the

corresponding quantile factor responses is empirically interesting. During the first 20

months following a global inflation shock, the 90th percentile factor of inflation reacts

more strongly than the median and the 10th percentile factor. During the first five

months, this pattern repeats for industrial production. This fact suggests that the
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distributions of inflation and industrial production become more leptokurtic as well as

positively skewed following the shock. Taking the scenario perspective instead, the 90th

percentile factor responses represent a benchmark scenario with larger global spillovers

and a stronger response of inflation compared to what is the case in the FAVAR. For the

global supply chain pressure indicator, inflation does not respond on impact. During

subsequent months, inflation then responds positively, peaking after about two years. In

the QFAVAR, however, we see that the 90th percentile inflation factor does respond

positively on impact, indicating upside risk to the inflation outlook. In the following

months, the median and 10th percentile factor follow up, shifting the entire inflation

distribution toward higher realizations. For industrial production, the FAVAR first

indicates a contraction on impact. The median factor mirrors this behaviour. The

left-tail factor responds negatively and the right-tail factor responds positively on

impact, translating into an increase in uncertainty about the industrial production

outlook and a more leptokurtic distribution. In subsequent periods, the 90th percentile

factor contracts more strongly than the 10th percentile factor, inducing a negative skew

in the distribution, accompanied by marked output contraction over the medium turn.

Alternatively, one could construct a scenario combining the response of the 90th

percentile of inflation and median industrial production factor instead. In this scenario,

the shock would lead to an output response similar to what is the case in the FAVAR,

but with higher inflation, worsening the policy trade-off. The responses of economic

sentiment, financial stress, and especially the long-term interest rate all indicate higher

uncertainty about the outlook than under the FAVAR.
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Figure 7: Impulse response functions (posterior median and 68% bands) of 10th, 50th,
and 90th percentile factors to global shocks from the benchmark QFAVAR specification.
Each row represents a global shock (GINF, GSCPI, FCI, GEPU); the own-response is
shown in the last column. The first five columns show the responses of each of the three
percentiles of the five factors extracted from country-level euro-area data. Responses of
the 10th percentile factors are in blue, reponses of the 50th percentile factors are in red,
and responses of the 90th percentile factors are in yellow.

In case of tightening global financial conditions, the left tail and median inflation

factors respond similarly to the mean factors during the first months after the

tightening. The right tail factor has a slightly more muted response, inducing positive

skew. Overall, the distribution shifts toward lower realizations. What is more striking is

the response of industrial production. Compared to the mean model, the median and

90th percentile factor respond less, but the 10th percentile factor responds with a more

extreme output contraction. The distribution hence becomes strongly negatively skewed

and suggests non-negligible downside risks to the production outlook. Policy-makers

might hence pay particular attention to this scenario when monitoring global financial

conditions. Combining the 10th percentile inflation and industrial production factors,

allows for the construction of a severe scenario in which both prices and output react

more negatively than in the FAVAR. The responses of the other variables also show

richer dynamics than under the FAVAR. Although the sentiment outlook becomes

overall more uncertain, the interest rate and financial stress exhibit considerable positive

skew.
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Finally, an increase in global economic policy uncertainty is another interesting case.

In the FAVAR, inflation and especially industrial production respond negatively during

the first 30 and 10 months, respectively. For inflation, this pattern is broadly mirrored by

the quantile factors. The 90th and 10th percentile factors respond less and more strongly

than the mean factors, respectively. Overall, the inflation distribution thus becomes more

leptokurtic. In the case of industrial production, however, the median responds little, the

90th percentile factor responds positively, and the 10th percentile factor responds strongly

negatively, suggesting negative skew and pervasive uncertainty about the outlook. Taking

the scenario view, one could construct a severe (benign) scenario by combining the 10th

(90th) percentile responses of the inflation and industrial production factor. The severe

scenario would then correspond to a case with a more pronounced decline in inflation as

well as output. Although the ESI shows signs of downside risks to the sentiment outlook,

an increase in global economic policy uncertainty correlates with pronounced upside risks

for the long-term interest rate and financial stress.

To provide deeper insights into the importance of the four global variables as drivers

of the inflation and output responses, figure 8 displays generalized forecast error variance

decompositions of the different quantile levels of the inflation and output factors. For

the sake of clarity we only show the contribution of the global variables, which is why

the contribution shares do not add up to 100%. A few interesting patterns stand out.

Overall, changes in global variables explain the most variation in the 10th percentile

factors of inflation and IP, and they contribute less to the forecast error of the median and

90th percentile factors. Generally, they are more important for inflation than industrial

production, with the global variables accounting for roughly 40% of the forecast error

variance of the 10th percentile inflation factor and close to 30% of the 10th percentile

industrial production factor. For inflation, global inflation is the most important global

variable on impact. This pattern also holds true for the other quantile levels. In the

median and longer run, the global supply chain pressure index becomes dominant and

contributes by far the largest share. At the 10th percentile, it accounts for almost 20%.

Interestingly, the timing of when the supply chain pressure index becomes dominant

differs across quantile levels. At the 10th, 50th, and 90th percentile levels it contributes

the largest share after roughly 5, 10, and 15 months, respectively. Global economic policy

uncertainty is the third most important global variable, and global financial conditions are

the least important global variable driving the inflation quantile factors. This picture is

different for industrial production. At the 10% level, the FCI is the most important global

variable for most of the forecast horizon, contributing about 10% to the total variation.

The other global factors have roughly equal share, with global inflation contributing the
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least. These findings again show that financial conditions emerge as an important driver

of output at risk - once modelled in a multivariate system - adding to the open debate.

At the median and 90% level the global supply chain pressure indicator is dominant,

followed by global economic policy uncertainty. Together they account for more than half

of the total contribution by global variables. The FCI and global inflation contribute

relatively equal shares. Overall, these findings point towards non-negligible asymmetries

in the inflation and industrial production process, with downside risks being particularly

responsive to global developments.

Figure 8: Forecast error variance decompositions of the 10th, 50th, and 90th percentile
factors for inflation and industrial production.

3.4.2 Country-level responses to global shocks

Finally, our proposed QFAVAR allows mapping the quantile factor responses back to

the panel of individual country-level variables. To do so, we simply project the quantile

factor responses back to the measurement equation using the loading matrices Λ and

Γ. Note that Γ plays a particular role for the quantile dynamics of the country-level

variables. With Γ = 0, the global factors have no direct impact on the country-level

variables and only affect their quantile responses indirectly through the factors. The

entire dynamics in the measurement equation are then driven by the common component.

Because we allow the individual variables to load on their group-specific factors only,
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this also implies that the country-level IRFs are just the factor-level IRFs rescaled by

the individual loadings. In this case, heterogeneity between the individual EA countries

and across quantile levels is limited to the magnitude of the responses. To allow for

more flexible degrees of heterogeneity, in this section we focus on the case where Γ is

unrestricted, and we report the full set of responses for the Γ = 0 case in the appendix

as a robustness exercise. In addition, given the large set of countries and variables under

study, we focus on interesting subsets of countries and variables in the main body of this

paper and refer the reader to the appendix for the full set of responses.

Figures 9, 10, 11, and 12 present the generalized IRFs for HICP and IP following an

increase in the four global variables. Starting with global inflation, we show the IRFs

for France, which experienced relatively low inflation compared to the European average,

Belgium, which had inflation rates close to the European average, and the Netherlands and

Italy, which were among the countries with the highest inflation rates in the EA during the

recent high-inflation period. A few interesting features stand out. In terms of dynamics,

the inflation responses in France and Belgium look roughly similar; however, the inflation

response in France is more leptokurtic and negatively skewed. Overall, the inflation

outlook in France is more uncertain, but lower inflation realizations are relatively more

likely compared to Belgium. The opposite is true for both, the Netherlands and Italy. Here

the inflation distribution is characterized by a marked response of the upper tail and hence

upside risk to the inflation outlook following an increase in global inflation. Although the

median responses are comparable across both the low- and high-inflation countries, what

sets them apart is pronounced heterogeneity in the tails of the distributions. Policy

makers in the euro-area might hence want to pay particular attention to cross-country

heterogeneity following global inflation shocks. For industrial production, the dynamics

are rather similar across countries. In Belgium, the production outlook is more uncertain

overall on impact, and in the Netherlands upsides risks are slightly more pronounced.
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Figure 9: Impulse response functions (median and 68% bands) at the 10th, 50th, and
90th percentiles of country-level inflation (first row) and industrial production (second
row). Shock is to the global inflation (GINF). Responses at the 10th percentiles are in
blue, responses at the 50th percentiles are in red, and responses at the 90th percentiles
are in yellow.

To showcase the effects of an increase in the global supply chain pressure indicator,

we select Germany and Italy as examples of a core and periphery country with a large

manufacturing share of overall industrial output and we select France and Spain as large

core and periphery countries with a comparatively low manufacturing share. On impact,

the inflation outlook becomes more uncertain in all countries but Italy and is positively

skewed in France and Spain. In addition, although inflation picks up in Germany, France,

and Spain on impact, in Italy it only does with delay. A different pictures emerges for

industrial production. In all countries, the production outlook becomes uncertain on

impact; however, this uncertainty is pervasive in the countries with large manufacturing

share (Germany and Italy).
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Figure 10: Impulse response functions (median and 68% bands) at 10th, 50th, and
90th percentiles of country-level inflation (first row) and industrial production (second
row). Shock is to the global supply chain pressure index (GSCPI). Responses at the 10th
percentiles are in blue, reponses at the 50th percentiles are in red, and responses at the
90th percentiles are in yellow.

Next, we turn to the IRFs in response to tightening global financial conditions. Here

we focus on Germany and the Netherlands as examples of large and small core countries,

and we focus on Italy and Portugal as examples of large and small periphery countries.

On impact, inflation responds negatively in all countries. In Portugal, inflation responds

more negatively overall, but the response in the Netherlands is characterized by greater

uncertainty and a particularly marked response at the 10th percentile. Tail risks are

hence more pronounced than in the other countries. Equally interesting are the responses

of industrial production. On average the 90th percentile responds the least and the

10th percentile the most, indicating an overall increase in uncertainty in all countries.

In Germany, Italy, and Portugal, the response of the median and 90th percentile are

rather similar. In the Netherlands, the response is more muted and the 90th percentile

responds positively on impact. The largest differences emerge for the response at the 10th

percentile. The response is similar in Germany and Italy but more pronounced in Portugal

and especially the Netherlands. In this stylized study, smaller countries are hence more

susceptible to downside risks to the production outlook, following an increase in global

financial conditions. More generally, these results are well in line with our findings from

above as well as the literature that finds that financial conditions are an important driver

of downside risks to output (Adrian et al., 2019).
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Figure 11: Impulse response functions (median and 68% bands) at 10th, 50th, and 90th
percentiles of country-level inflation (first row) and industrial production (second row).
Shock is to the financial conditions index (FCI). Responses at the 10th percentiles are in
blue, reponses at the 50th percentiles are in red, and responses at the 90th percentiles are
in yellow.

Finally, we turn attention to global economic policy uncertainty. Here we show the

responses of Germany, France, Spain, and Portugal. The inflation response of Germany

and France are roughly similar and symmetric. Both countries only respond little on

impact and the dynamics are generally more muted compared to the other two countries.

What stands out is that the periphery countries (Portugal and Spain) respond negatively

on impact. The responses of industrial production show greater heterogeneity across

quantile levels. With the exception of Portugal, the on-impact responses are stronger

from the 90th to the 10th percentile. As before, this is indicative of increasing uncertainty

about the outlook, a feature hidden in a classical FAVAR.
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Figure 12: Impulse response functions (median and 68% bands) at 10th, 50th, and
90th percentiles of country-level inflation (first row) and industrial production (second
row). Shock is to the global economic policy uncertainty (GEPU). Responses at the 10th
percentiles are in blue, reponses at the 50th percentiles are in red, and responses at the
90th percentiles are in yellow.

Our stylized analysis focuses on generalized impulse response functions and hence does

not allow statements linked to specific structural shocks. Nonetheless, the country-level

IRFs are evidence of strong heterogeneity, not only across quantile levels, but also across

individual EA countries. Given the structure of the monetary union and the conduct

of a common monetary policy, the QFAVAR offers policy-makers a tool to monitor not

only these heterogeneities, but also risks to fragmentation of the broader transmission

of economic shocks. Taking the scenario-analysis view based on the proposed QFAVAR

might hence be a particularly useful addition to the policy analysis toolbox.

3.4.3 Quantile connectedness

To conclude the empirical section, we extend our FEVD analysis and derive quantile

connectedness measures similar to Diebold and Yılmaz (2014). In a first step, we use

the state space form of our model to map the FEVDs from the state equation to the

panel of individual country-level variables. In a second step, we construct a variance

decomposition matrix for each forecast horizon,

Dh =


dh1,1 . . . dh1,l+k
...

. . .
...

dhmnr,1 . . . dhmnr,l+k

 , (12)

where element dhi,j denotes the fraction of variable ith forecast error attributed to state
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variable j at forecast horizon h. Alternatively, we relate the variance decomposition

matrix, Dh, to a weighted network adjacency matrix, A. Compared to Diebold and

Yılmaz (2014), however, the matrices Dh and A are not directly equivalent, because our

state-space system has l + k shocks and n ×m × r country-level variables. To represent

the variance decomposition matrix as directed network, we stack the observed variables,

quantile factors, and global variables, and we construct the augmented variance

decomposition matrix,

D̃h =

[
0 Dh

0 Dh
s

]
= A, (13)

where Dh
s denotes the variance decomposition matrix for the state equation that is

constructed analogously to Dh. In line with Diebold and Yılmaz (2014) we now define

Ch
i←j = d̃hi,j (14)

as the pairwise directional connectedness from j to i. Dh hence stores the directional

connectedness from the global variables and quantile factors to the country-level

variables, and Dh
s contains the pairwise connectedness among the global variables and

quantile factors. The 0 entries are an artefact of the QFAVAR’s structure and imply

that there is no directional connectedness among the country-level variables or from the

country-level variables to the global variables and quantile factors.

To illustrate the QFAVAR connectedness, figure 13 displays the directed network

graphs implied by D̃h. Given the large dimensions of our model, in line with the

previous sections we focus on interesting sub graphs. The left column of figure 13

contains the connectedness of country-level inflation with the global variables for the

three quantile levels of interest, qr ∈ [0.1, 0.5, 0.9], for h = 24. The right column contains

the analogous directed graphs for country-level industrial production. In addition, we

exclude edges for which the directional connectedness is smaller than 5%. In general, the

thicker the edge, the stronger the directional connectedness. A few features stand out

immediately. For inflation, country-level inflation overall is strongly connected to the

global variables. The global supply chain pressure index, and to a lesser extent global

inflation, have the largest directional connectedness to country-level inflation for all

quantile levels. Across quantile levels, the patterns are relatively similar; however,

although global economic policy uncertainty is connected to inflation in all countries at

the 10% level, it only connects to a subset of countries at the 50% and 90% level. In
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contrast, for industrial production the pattern is very heterogeneous across quantile

levels. At the 10% level the FCI has the strongest connectedness, especially to Spain.

Global economic policy uncertainty emerges as the second most connected global

variable. At the 50% level, the FCI connects to industrial production in all countries but

the Netherlands. Global economic policy uncertainty only connects to industrial

production in the Netherlands, Austria, and Germany. At the 90% level the global FCI

only connects to Spain, France, Austria, and Portugal, and the global supply chain

pressure index now connects to industrial production in Italy, Germany, and Belgium.

Overall, though the connectedness networks reflect the observations for the FEVD of the

quantile factors in section 3.4.1, they allow us to observe previously hidden

heterogeneity across EA countries.

Figure 13: Pairwise Directional Connectedness Networks.

4 Conclusions

We develop a new quantile factor augmented vector autoregressive (QFAVAR) model

that is a natural extension of the popular FAVAR for targeting specific quantiles of the

distribution of macroeconomic data. The advantage of the factor-based approach over

quantile VAR modeling is that it is both flexible and parsimonious. The factors not only

summarize cross-sectional correlations across different countries, but also across different

quantiles of the data distribution. Using a Bayesian perspective, estimation of the
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QFAVAR adds only a minor level of complexity relative to a Markov chain Monte Carlo

algorithm for the classical FAVAR model (Bernanke et al., 2005). As MCMC can be

computationally demanding in high dimensions, we also develop a simple two-step

variational Bayes estimator that is appropriate for the computational demands

associated with recursive out-of-sample forecasting exercises.

The proposed QFAVAR is fully parametric (likelihood-based), meaning that our

proposed specification can easily extend to incorporate other formulations without

inducing huge estimation and setup costs. First, we can obtain quantile dynamic factor

models and univariate quantile autoregressions as special cases of the QFAVAR simply

by restricting certain parameters of the state-space form of the model. Second, we can

incorporate interesting features such as time-varying parameters and stochastic

volatility in the measurement and/or state equations of the model in order to allow for

more flexible inference. Finally, although our approach to impulse response analysis

follows a more neutral approach, by focusing on generalized impulse response functions,

the QFAVAR can trivially be treated as a formal structural VAR model. We leave these

extensions for future research.
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A Technical Appendix: Derivation of the linear

state-space form

Throughout the following, lower case letters indicate scalars, bold lower case letters

indicate vectors, and bold upper case letters denote matrices. Let yij,t denote a

macroeconomic or financial indicator i = 1, . . . ,m for country j = 1, . . . , n that is

observed for time t = 1, . . . , T . Additionally, let q ∈ (0, 1) denote a given quantile level.

The quantile factor regression for variable yij,t for quantile level q is of the form

yijt = cij(q) + λij(q)f
i
t(q) + γij(q)gt + uij,t(q), uij,t(q) ∼ AL(0, σij(q), q) (A.1)

Stacking all variables over i, j, i = 1, ...,m, j = 1, ..., n, into the vector

yt = [y11t, ..., y1nt, ..., ym1t, ..., ymnt]
′ we obtain the model

yt = cq + λ(q)ft(q) + γ(q)gt + ut(q), (A.2)

where c(q) =
[
c11(q), ..., c1n(q), ..., cm1(q), ..., cmn(q)

]′
is an nm × 1 vector,

γ(q) =
[
γ ′11(q), ...,γ

′
1n(q), ...,γ

′
m1(q), ...,γ

′
mn(q)

]′
is an nm × k matrix,

ut(q) =
[
u11t(q), ..., u1nt(q), ..., um1t(q), ..., umnt(q)

]′
is an nm× 1 vector,

λ(q) = diag
(
λ1(q),λ2(q), ...,λm(q)

)
=




λ11(q)

...

λ1n(q)

 0 ... 0

0


λ21(q)

...

λ2n(q)

 . . .
...

...
. . . . . . 0

0 ... 0


λm1(q)

...

λmn(q)




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and ft(q) =


f 1
t(q)

f 2
t(q)
...

fmt(q)

. Equation (A.2) shows the FAVAR measurement equation for each

quantile level q. Stacking across r quantiles q = q1, ..., qr we obtain

Yt = c+ΛFt + Γgt + ut, (A.3)

where c =
[
c′(q1), ..., c

′
(qr)

]′
is an (nmr × 1) vector, Γ =

[
γ ′(q1), ...,γ

′
(qr)

]′
is an (nmr × k)

matrix, Ft =
[
f ′t(q1), ...,f

′
t(qr)

]′
is an (mr × 1) vector and Λ =

[
λ′(q1), ...,λ(qr)′

]′
is an

(nmr ×mr) matrix.

Augmenting the measurement equation (A.3) with an identity for gt and combining

it with the state equation (4) we obtain the state-space form of the QFAVAR[
Yt

gt

]
= c+

[
Λ Γ

0 I

][
Ft

gt

]
+

[
ut

0

]
, (A.4)[

Ft

gt

]
= v +Φ1

[
Ft−1

gt−1

]
+ ...+Φp

[
Ft−p

gt−p

]
+ εt. (A.5)

Each element of the vector ut is distributed as independent univariate asymmetric Laplace.

As explained in the main text we can write the asymmetric Laplace as a Gaussian-

Exponential location-scale mixture, in which case we the state-space model above is in

conditionally normal form and sampling of the state-vector [F ′t , g
′
t]
′ is feasible using the

simulation smoother of Carter and Kohn (1994). Finally, note that sampling of the state-

form requires first-order Markov dependence of the state variable. In equation (A.5) above

the state vector follows a VAR(p) but we can use standard tools for writing it in VAR(1)

companion form, (see Lütkepohl, 2005, Chapter 2). Detailed derivations of MCMC and

variational Bayes algorithms for inference, are provided in the online supplement.
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Dimitris Korobilis and Maximilian Schröder

A Bayesian estimation of the Quantile FAVAR model

A.1 Derivation of the linear, Gaussian state-space form

Throughout the following, lower case letters indicate scalars, bold lower case letters

indicate vectors, and bold upper case letters denote matrices. Let yij,t denote a

macroeconomic or financial indicator i = 1, . . . ,m for country j = 1, . . . , n that is

observed for time t = 1, . . . , T . Additionally, let q ∈ (0, 1) denote a given quantile level.

The measurement equation of the QFAVAR for variable yij,t for quantile level q is then

of the form

yij,t = cij(q) + βij(q)yij,t−1 + λ
′
ij(q)ft(q) + γ

′
ij(q)gt + uij,t(q), uij,t(q) ∼ AL(0, σij(q), q) (1)

where gt denotes the set of observed global variables, ft(q) denotes the quantile factors,

and γij(q) and λij(q) are conformable loading vectors. cij(q) and βij(q) denote a constant

and an autoregressive coefficient, respectively. To ease notation, we will suppress cij(q)

and βij(q) in the following expressions without loss of generality. Finally, AL(0, σij(q), q)

denotes the univariate asymmetric Laplace density with the location parameter set to 0,

scale parameter σij(q), and asymmetry parameter q. The use of the univariate asymmetric

Laplace later implies a diagonal covariance matrix in the measurement equation and thus

mirrors the standard identifying assumption used in linear Gaussian factor models. This

distribution is parametrized as

uij,t(q) ∼
q(1− q)

σij,t

[
e
(1−q)

uij,t(q)
σij(q) I(uij,t(q) ≤ 0) + e

−q
uij,t(q)
σij(q) I(uij,t(q) > 0)

]
. (2)

The first step towards tractable Bayesian inference is to rewrite the asymmetric

Laplace likelihood as a conditionally Gaussian likelihood, which greatly simplifies

inference. Following Yu and Moyeed (2001) the AL distribution can equivalently be

expressed as a normal-exponential mixture of the form
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uij,t(q)|zij,t(q) ∼
1√

2πzij,t(q)σij(q)κ
2
2(q)

exp

−

(
yij,t − λ′ij(q)ft(q) − γ

′
ij(q)gt − κ1(q)zij,t(q)

)2
2zij,t(q)σij(q)κ

2
2(q)

 exp

{
−
zij,t(q)

σij(q)

}
,

(3)

or compactly uij,t(q)|zij,t(q) ∼ N(κ1(q)zij,t(q), κ
2
2(q)σij(q)zij,t(q)), with zijt,(q) ∼ Exp(σij(q)), where

Exp(•) denotes the exponential distribution, κ1(q) =
1−2q
q(1−q) , and κ

2
2(q) =

2
q(1−q) . Using this scale

mixture of normals representation, we can rewrite 1 as

yij,t = λ
′
ij(q)ft(q) + γ

′
ij(q)gt + κ1(q)zij,t(q) + κ2(q)

√
σij(q)zij,t(q)νij,t, νij,t ∼ N(0, 1). (4)

For a given quantile level q, we can now collect the set of variables and stack their respective

measurement equations across countries, j, and indicators, i



y11,t
...

y1n,t

y21,t
...

y2n,t
...

ymn,t


=



λ′11(q) γ ′11(q)
...

...

λ′1n(q) γ ′1n(q)

λ′21(q) γ ′21(q)
...

...

λ′2n(q) γ ′2n(q)
...

...

λ′mn(q) γ ′mn(q)



[
ft(q)

gt

]



z̃11,t(q)
...

z̃1n,t(q)

z̃21,t(q)
...

z̃2n,t(q)
...

z̃mn,t(q)


+



ν̃11,t(q)
...

ν̃1n,t(q)

ν̃21,t(q)
...

ν̃2n,t(q)
...

ν̃mn,t(q)


(5)

where ν̃ij,t(q) collects κ2(q)
√
σij(q)zij,t(q)νij,t and z̃ij,t(q) denotes κ1(q)zij,t(q) to simplify notation.

Importantly, different quantile levels maintain the same structure. To model multiple quantile

levels simultaneously, we now stack the block of equations in 5 for different quantile levels. For

example, for three arbitrary quantile levels q = {q1, q2, q3}, this yields
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

y1•,t
...

ym•,t

y1•,t
...

ym•,t

y1•,t
...

ym•,t



=



Λ′1•,t(q1) 0 0 γ′1•,t(q1)
...

...
...

Λ′m•(q1) 0 0 γ′m•,t(q1)

0 Λ′1•(q2) 0 γ′1•,t(q2)
...

...
...

0 Λ′m•(q2) 0 γ′m•,t(q2)

0 0 Λ′1•(q3) γ′1•,t(q3)
...

...
...

0 0 Λ′m•(q3) γ′m•,t(q3)




ft(q1)

ft(q2)

ft(q3)

gt

+



z̃1•,t(q1)
...

z̃m•,t(q1)

z̃1•,t(q2)
...

z̃m•,t(q2)

z̃1•,t(q3)
...

z̃m•,t(q3)



+



ν̃1•,t(q1)
...

ν̃m•,t(q1)

ν̃1•,t(q2)
...

ν̃m•,t(q2)

ν̃1•,t(q3)
...

ν̃m•,t(v3)


(6)

Note that the LHS of equation 6 repeatedly stacks the observed variables yij,t. A key feature of

this formulation is that the conditional quantiles of each variable only load onto the quantile

factors that are defined at the same quantile level. This induces sparsity in the loadings matrix

and hence keeps the model parsimonious which in turn facilitates inference.

With the measurement equations in place, we now turn to defining the state equation. The

state equation generally follows a VAR(p) and describes the joint evolution of the quantile factors

ft(q) and the observed global variables gt. Without loss of generality, we restrict attention to a

VAR(1) in order to ease notation.
ft(q1)

ft(q2)

ft(q3)

gt

 = v +Φ


ft−1(q1)

ft−1(q2)

ft−1(q3)

gt−1

+ εt, εt ∼ N(0,Ω) (7)

where Φ denotes a conformable coefficient matrix, v is a vector of constants, and εt denotes

the vector of reduced form residuals. While the variables in the measurement equation evolve

independently conditional on the factors, the state equation allows for the factors at different

quantile levels to co-move with one another and with the global variables. Overall, we hence

model the co-movements of a potentially high dimensional quantile surface, by compressing them

down to a lower dimensional space. This ensures parsimony and computational tractability.

Fully cast into state space form, the system is given by
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[
yt

gt

]
=

[
Λ Γ

0 I

][
Ft

gt

]
+ ν̃t (8)[

Ft

gt

]
= Φ

[
Ft−1

gt−1

]
+ εt, εt ∼ N(0,Ω) (9)

where yt = [y′11,t(q1), . . . , y
′
mn,t(q3)

]′, Ft = [f ′t(q1), . . . ,f
′
t(q3)

]′, ν̃t = [ν̃ ′11,t(q1), . . . , ν̃
′
mn,t(qr)

]′, and Λ

and Γ are conformable coefficient matrices collecting λij(q) and γij(q), respectively, as shown

above. Further, Ω denotes the covariance matrix of the reduced form residuals. The resulting

QFAVAR is hence a linear Gaussian state-space model and standard filtering and smoothing

algorithms apply.

As one additional extension, in our application we introduce stochastic volatility to the state

equation and hence allow the diagonal elements of Ωt to be time-varying. Again, standard

methods for estimating models with stochastic volatility apply so we leave the details to the

appendix on estimation.

A.2 Identification

As is common in standard linear Gaussian factor models, while the common component, ΛFt,

is identified the loadings, Λ, and factors, Ft, are not identified individually. While forecasting

exercises can still proceed even without identification, identification is necessary for structural

analysis and the computation of IRFs. In our empirical exercise, we facilitate factor identification

with three strategies.

1. First, we group the variables yij,t by their economic interpretation and extract only one

factor per block. The loadings matrix Λ(q) collecting all loadings at a given quantile

level is hence block-diagonal. Specifically, for ft(q) = [f1t(q), f
2
t(q), · · · , f

i
t(q), · · · , f

m
t(q)]

′ the

corresponding loadings are given by

λ′ij(q) = [0, 0, · · · , λij(q), · · · , 0], (10)

and

Λ′i•(q) =


0 0 · · · λi1(q) · · · 0

0 0 · · · λi2(q) · · · 0
...

...
...

...

0 0 · · · λin(q) · · · 0

 (11)

4



For two reasons, this has the additional benefit of giving the factors a specific

interpretation. First, for e.g. all industrial production series, we will identify one

industrial factor per quantile level. A similar strategy is already suggested in the original

FAVAR framework proposed by Bernanke et al. (2005). Second, grouping series that

move similarly and are conceptually related, such as industrial production from different

EA countries, ensures that the quantile factors can be assigned to the corresponding

quantile levels and maintain their economic interpretation. Grouping e.g. industrial

production and unemployment instead would mix across different economic concepts as

the resulting e.g. 10th percentile factor would be extracted from low unemployment, but

also low industrial production. This greatly complicates interpretation. Following our

strategy instead, we interpret the factors as e.g. the quantile industrial production

factors.

Note, however, that this choice also has clear implications for the dynamics of the model.

In the case of Γ = 0, β = 0, and c = 0, i.e. the absence of global variables and constants

in the measurement equation, the conditional quantiles of yt, yt(q), are governed by the

common component, Λft, only. Given that we allow for only one factor per group of

variables, this implies that the conditional quantiles yijt(q) are just rescaled versions of

the factors, ft. The conditional quantiles of a given variables for different countries,

yi•t(q) then also feature identical dynamics and only differ in their scale. In order to

highlight more meaningful heterogeneities, it is hence important to allow for additional

RHS variables in the measurement equation, such as global variables.

2. To fix the scale of the quantile factors within their groups, we further restrict one loading

per quantile to unity. This yields e.g.

Λ′i•(q) =


0 0 · · · 1 · · · 0

0 0 · · · λi2(q) · · · 0
...

...
...

...

0 0 · · · λin(q) · · · 0

 (12)

3. To identify the sign of the quantile factors, we extract quantile factors using the

probabilistic quantile factor algorithm proposed by Korobilis and Schröder (2022) from

the same set of variables prior to estimation. Each iteration of the algorithm, we then

check whether the QFAVAR factors are positively correlated with the corresponding

VBQFA factors and invert them if this is not the case.
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A.3 Markov Chain Monte Carlo estimation

The Gibbs sampler requires deriving conditional posteriors. As outlined above, we formulated

the QFAVAR as a linear Gaussian state space model and hence standard practices apply.

A.3.1 Prior Distributions

In our proposed approach, we specify the following prior distributions

σij(q) ∼ G−1(r0, s0) (13)

zij,t(q) ∼ Exp(σij(q)) (14)

To simplify notation, let Φ collect the coefficient vectors and matrices in the measurement

equations, i.e. Λ and Γ. Correspondingly, let F̂t = [F ′t , g
′
t]. As outlined in the main body of the

text, we impose shrinkage on Φ by means of the horseshoe prior following Makalic and Schmidt

(2016), given by

ϕij(q)|
{
λ̄ij(q),k,ϕ, υij(q),k,ϕ

}lϕ
k=1

, τij(q),ϕ, ξij(q),ϕ ∼ N(0, σij(q)τ
2
ij(q),ϕΛ̄ij(q),ϕ), (15)

λ̄2ij(q),k,ϕ|υij(q),k,ϕ ∼ G−1
(
1

2
,

1

υij(q),k,ϕ

)
, for k = 1, · · · , lϕ, (16)

υij(q),k,ϕ ∼ G−1
(
1

2
, 1

)
, for k = 1, · · · , lϕ, (17)

τ2ij(q),ϕ|ξij(q),ϕ ∼ G−1
(
1

2
,

1

ξij(q),ϕ

)
, (18)

ξij(q),ϕ ∼ G−1
(
1

2
, 1

)
, (19)

where Λ̄ij(q),ϕ = diag(λ̄2ij(q),1,ϕ, · · · , λ̄
2
ij(q),l,ϕ), subscript k denotes the element of ϕij(q) for k =

1, · · · , lϕ, where lϕ is equal to the number of factors, nf , number of global variables, ng, plus

the constant. Further, subscript ϕ indicates that the parameters of the shrinkage prior apply to

the elements of the measurement equation. Similarly, because the VAR in the state equation 7

is heavily parametrized, we define another set of horseshoe priors to the elements of Ψ.
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ψr|
{
λ̄s,ψ, υs,ψ

}lψ
s=1

, τr,ψ, ξr,ψ ∼ N(0, ωrτ
2
r,ψΛ̄r,ψ), (20)

λ̄2r,s,ψ|υr,s,ψ ∼ G−1
(
1

2
,

1

υr,s,ψ

)
, for s = 1, · · · , lψ, (21)

υr,s,ψ ∼ G−1
(
1

2
, 1

)
, for s = 1, · · · , lψ, (22)

τ2r,ψ|ξr,ψ ∼ G−1
(
1

2
,

1

ξr,ψ

)
, (23)

ξr,ψ ∼ G−1
(
1

2
, 1

)
, (24)

where r = 1, · · · , R, with R = nf + ng indexes the state equation, s = 1, · · · , lψ indexes the

individual parameter in the respective state equation and lψ = (nf + ng) × p, where p denotes

the number of lags, and subscript ψ indicates that the prior hyperparameters belong to the

state equation.

To be able to estimate the QFAVAR with and without stochastic volatility in the state

equation, we take the following approach to sample the elements of the covariance matrix. Let

Ωt = AHtA
′ (25)

with Ht = diag(eh1,t , · · · , ehR,t). Further, A is a lower unitriangular coefficient matrix.

Sampling the elements of A this way has a drawback. In principle, the triangular structure

implies that the order of the states in the state equation matters. In a standard VAR setting,

the likelihood quickly dominates the prior for the covariance matrix, such that inference likely

remains unaffected. In our setting, it is unclear how much information the data contains about

the quantile factors. Depending on the exercise inference might hence suffer. To sample the

coefficients in A, we impose a normal prior.

ar ∼ N(µr,a,Σr,a) (26)

with r denoting the columns of A. What remains is to define the prior for hr,t. In the case

without stochastic volatility, we set

log(hr,t) = log(hr) = G−1(rh, sh) (27)

with stochastic volatility, we introduce the state equation

log(hr,t) = log(hr,t−1) + vt, vt ∼ N(0, σ2ω) (28)
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with hr,1 ∼ N(0, V0) and prior σ2ω ∼ IG(rω, sω).

A.3.2 Estimation Algorithm

Conditional on all parameter matrices being known (e.g. Λ, S, Φ), sampling of the state

vector [F ′t , g
′
t]
′ can be obtained using a simulation smoother such as the one proposed by

Carter and Kohn (1994). Conditional on these states, parameters can be obtained by using

standard methodologies for linear and quantile regression models. First, we need to obtain the

parameters in the measurement equation. As mentioned above, the univariate asymmetric

Laplace distributions of the individual measurement equations imply a diagonal covariance

matrix. Conditioning on the factors f it(q) and treating these as observed, the individual

measurement equations for yijt are independent. They can hence be treated as m × n × q

individual univariate quantile regressions. We can thus obtain samples from all parameters of

equation (1) using standard formulas provided in Khare and Hobert (2012). Next, we obtain

samples from the parameters of the state equation using standard formulas for Bayesian vector

autoregressions. Indeed, once we condition on [F ′t , g
′
t]
′, equation (7) becomes a VAR and the

conditional posteriors of v, Φ, Ω can be derived in a straightforward way (see Koop and

Korobilis, 2010, for a thorough examination of Bayesian inference in VARs).

All sampling steps of the MCMC algorithm are provided in algorithm 1.

A.4 Variational Bayes estimation

We also propose a 2-step variational QFAVAR algorithm which is appropriate for forecasting

or other computationally cumbersome applications of the model. For a general introduction to

variational Bayes (VB) see Blei et al. (2017). Generally, variational inference and MCMC both

provide approximations to a given posterior distribution. While MCMC provides

approximations through sampling, VB approximates the objective by solving an optimization

problem.While in practice both algorithms end up being iterative, VB is computationally less

intensive than MCMC due to the fact that it requires significantly less iterations. As a caveat,

while MCMC approximates the full posterior distribution and its uncertainty, VB only

provides the posterior mean and (a possibly biased estimate of the) posterior variance.

Therefore, VB is particularly useful for tasks where precise inference is less of a concern, such

as big data applications, large scale forecasting exercises, or real-time monitoring tasks.

Our algorithm evolves as follows. We first extract the quantile factors, Ft, using the VBQFA

algorithm proposed in Korobilis and Schröder (2022). These are the same factors that we use

to identify the sign of the factors in our proposed MCMC algorithm. Conditional on these

factors, we then update the loadings and the remaining parameters in measurement equation

1. Finally, we update the parameters of the VAR in state equation 7 and generate forecasts.

8



Algorithm 1: MCMC algorithm for the estimation of the QFAVAR
begin

Define κ1(q) =
1−2q
q(1−q) and κ2

2(q)
= 2

q(1−q) for each quantile level q.

[1] Sample the parameters in the measurement equation leveraging results from Bayesian quantile regression:
for q = 1 : nq do

for i = 1 : m do
for j = 1 : n do

[i] Sample ϕij(q) from the full conditional (ϕij(q)|−) ∼ N(µϕ
ij(q)

,Σϕ
ij(q)

), with

µϕ
ij(q)

= Σϕ
ij(q)

{
F̂ ′diag(ν̃−1

ij(q)
)ỹij(q)

}
, Σϕ

ij(q)
=

{
F̂ ′diag(ν̃ij(q))

−1F̂ + Λ̃−1
ij(q)

}−1
,

where ν̃ij(q) = σij(q)κ
2
2(q)

zij,•(q), ỹij(q) = yij,•(q) − κ1(q)zij,•(q), and
Λ̃−1
ij(q)

= diag(λ̄2
ij(q),•,ϕτ

2
ij(q),ϕ

)−1.

[ii] Sample the parameters corresponding to the horseshoe prior from(
λ̄2
ij(q),k,ϕ

|−
)
∼ IG

(
1,
ϕ2
ij,k(q)

2τ2
ij(q),ϕ

+ 1
υij(q),k,ϕ

)
,
(
υij(q),k,ϕ|−

)
∼ IG

(
1, 1 + 1/(λ̄2

ij(q),k,ϕ
)
)
,(

τ2
ij(q),ϕ

|−
)
∼ IG

(
lϕ+1

2
, 1
ξij(q),ϕ

+
∑lϕ
k

ϕ2
ij(q)

2λ̄2
ij(q),k,ϕ

)
,
(
ξij(q),ϕ|−

)
∼ IG

(
1, 1 + 1

τ2
ij(q),ϕ

)
,

for k = 1, · · · , lϕ.
[iii] Sample the latent quantile variables from

(
zij,t(q)|−

)
∼ GIG (χz , ψz), with

χz =

{
yij,t(q)−ϕ̂

′
ij(q)Ft

}2

κ2
1(q)

+2κ2
2(q)

, ψz =
κ2
1(q)+2κ2

2(q)

σij(q)κ
2
2(q)

for all t = 1, · · · , T .
[iv] Sample the factor regression variances

(
σij(q)|−

)
∼ IG (rσ , sσ), where rσ = r0 + 3T/2

and sσ = s0 +
∑T
t=1

{
yij,t(q)−ϕ̂

′
ij(q)Ft−κ

2
1(q)zij,t(q)

}2

2zij,t(q)κ
2
2(q)

end

end

end
[2] Sample the quantile factors Ft. Define ỹij(q) = yij,•(q) − κ1(q)zij,•(q) and stack the loadings according
to 6. Sample Ft using the Kalman filter & smoother.

[3] Sample the diagonal elements, hr,t of covariance matrix Ωt in state equation 7.
if stochastic volatility then

set y∗r,t = log
{
(Fr,t − Ft−1Ψ′

r)
2
}

and sample log(hr,t) using the Chan (2013) filter. And update σ2
t,ω

from (σ2
t,ω |−) ∼ IG

(
rω + 0.5(T − p− 1), sω + 0.5 ·

∑T
t=1(hr,t − hr,t−1)2

)
for every r = 1, · · · , R.

else

Sample from (σ2
t,ω = σ2

ω |−) ∼ IG
(
rh + 0.5 · (T − p), sh + 0.5 ·

∑T
t=1(Fr,t − Ft−1Ψ′

r)
2
)

for all r = 1, · · · , R.
end
[4] Sample the off-diagonal elements of Ωt, A, and the VAR coefficients Ψ
for r = 1 : R do

[i] Sample ψr and ar jointly from the full conditional (ψr,ar|−) ∼ N(µψr ,Σ
ψ
r ), with

µψr = Σψr

{
X′diag(σ2

t,ω)
−1f̂r

}
, Σψr =

{
X′diag(σ2

t,ω)
−1X + Λ̃−1

r

}−1
, where

X = [LF ′, LG′,E′
1:r−1]

′, er = f̂r − F̂ψ′
r −E′

1:r−1a
′
r, and

Λ̃−1
r = diag

(
[(λ̄2

r,•,ψ ,
′ τ2r,ψ)

−1,µr,a/Σr,a]
)
.

[ii] Sample the parameters of the horseshoe prior for ψr from
(
λ̄2r,s,ψ |−

)
∼ IG

(
1,
ψ2
r,s

2τ2
r,ψ

+ 1
υr,s,ψ

)
,(

υr,s,ψ |−
)
∼ IG

(
1, 1 + 1/(λ̄2

r,s,ψ)
)
,
(
τ2r,ψ |−

)
∼ IG

(
lψ+1

2
, 1
ξr,ψ

+
∑lψ
k

ψ2
r

2λ̄2
r,s,ψ

)
,(

ξr,ψ |−
)
∼ IG

(
1, 1 + 1

τ2
r,ψ

)
,

for s = 1, · · · , lψ .
end

end
Note: We use the rate parametrization of the IG distribution throughout. We use L to denote the lag operator.
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Treating the quantile factors estimated in the first stage as observed, the model parameters and

latent variables are given by θ = (Φ,σ, z,Ψ,Ω, τ 2
ϕ , ξϕ, λ̄

2
ϕ,υϕ, τ

2
ψ, ξψ, λ̄

2
ψ,υψ). For a family of

tractable densities q(θ), we aim to find a density q⋆ that best approximates the posterior p(θ|x)
by minimizing

q⋆(θ|x) = argmin
q∈Q

DKL (q(θ||p(θ|x)) , (29)

which is equivalent to maximizing

ELBO = Eq(θ|x) [log p(x|θ)] + Eq(θ|x) [log p(θ)]− Eq(θ|x) [log q(θ|x)] , (30)

where KL denotes the Kullback-Leibler divergence. Note that we need to optimize over a family

of distribution functions. Finding the solution to the problem hence requires the application

of variational calculus. Usually, optimization can be simplified by factorizing the variational

posterior into L groups of independent densities. In our proposed two-step estimator, we apply

the following factorization

q(θ|x) ≡ q
(
Φ,σ, z,Ψ,Ω, τ 2

ϕ , ξϕ, λ̄
2
ϕ,υϕ, τ

2
ψ, ξψ, λ̄

2
ψ,υψ

)
(31)

=

nq∏
q=1

m∏
j=1

n∏
i=1

q(ϕij(q)|x)q(σij(q)|x)q(τ2ij(q),ϕ|x)q(ξij(q),ϕ|x) lϕ∏
k=1

q(λ̄2ij(q),k,ϕ|x)q(υij(q),k),ϕ|x)
T∏
t=1

q(zij,t(q)|x)


·
R∏
r=1

q(ψr,ar|x)q(τ2r,ψ|x)q(ξr,ψ|x)q(ωr|x) lψ∏
s=1

q(λ̄2r,s,ψ|x)q(υr,s,ψ|x)

 ,
which implies partial posterior independence between the regression parameters and residual

variances in the individual measurement equations, the VAR parameters and covariance matrix

elements in the state equations, as well as the hyperparameters of the horseshoe priors. With

the additional assumption that the priors are conditionally independent, we can write the joint

prior as

10



p(θ) = p
(
Φ,σ, z,Ψ,Ω, τ 2

ϕ , ξϕ, λ̄
2
ϕ,υϕ, τ

2
ψ, ξψ, λ̄

2
ψ,υψ

)
(32)

=

nq∏
q=1

m∏
j=1

n∏
i=1

[
p(ϕij(q)|λ̄2

ij(q),ϕ, τ
2
ij(q),ϕ, σij(q))p(σij(q))p(τ

2
ij(q),ϕ|ξij(q),ϕ)p(ξij(q),ϕ)

· p(zij(q))
lϕ∏
k=1

p(λ̄2ij(q),k,ϕ|υij(q),k,ϕ)p(υij(q),k,ϕ)

]

·
R∏
r=1

[
p(ψr|λ̄2

r,ψ, τ
2
r,ψ, ωr)p(ωr)p(ar)p(τ

2
r,ψ|ξr,ψ)p(ξr,ψ)

lψ∏
s=1

p(λ̄2r,s,ψ|υr,s,ψ)p(υr,s,ψ)

]
.

Given this partitioning, it can be shown that the solution to the optimization problem can

be obtained by sequentially iterating over the densities

q(θl|x) ∝ exp Eq(θ(−l)|x)
(
log p(θl|θ(−l),x)

)
(33)

where θ(−l) denotes all elements of θ, excluding those in the lth group, l = 1, · · · , L.
Consequently, the variational posterior can be obtained by calculating the variational

expectation of the conditional posterior. Generally, the accuracy of the variational

approximation depends on how well the chosen partitioning matches the independence

structure of the parameters in the target posterior. In essence, this is where we trade off

computational tractability and speed with accuracy. For a general discussion of this issue see

e.g. Ormerod et al. (2017). In order to arrive at the final variational densities, we now need to

insert 31 and 32 into 33. Given that this expression relies on expectations of logarithms of

standard densities it is rather easy to derive, however, we suppress it here due to its very

lengthy nature. The expressions for q(θl|x) are presented in algorithm 2 together with the full

variational algorithm.
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Algorithm 2: 2-step Variational Bayes QFAVAR algorithm
Define κ1(q) =

1−2q
q(1−q) and κ2

2(q)
= 2

q(1−q) for each quantile level q.

Step 1: Estimate the factors F̂ using the variational VBQFA algorithm proposed in Korobilis and Schröder (2022) for each
quantile level, q, and for the variable blockings in 4.

Step 2: Conditional on the factors, estimate the remaining parameters of the model.
begin

[1] Update the parameters in the measurement equation:
for q = 1 : nq do

for i = 1 : m do
for j = 1 : n do

[i] Update ϕij(q) from q(ϕij(q)|x) = N(µϕ
ij(q)

,Σϕ
ij(q)

), with µϕ
ij(q)

= Σϕ
ij(q)

{
F̂ ′diag(ν̃−1

ij(q)
)ỹij(q)

}
,

Σϕ
ij(q)

=
{
F̂ ′diag(ν̃ij(q))

−1F̂ + Λ̃−1
ij(q)

}−1
, where ν̃−1

ij(q)
= κ−2

2(q)
E
(
σ−1
ij(q)

)
E
(
z−1
ij,•(q)

)
,

ỹij(q) = yij,•(q) − κ1(q)E
(
zij,•(q)

)
, and Λ̃−1

ij(q)
= diag

(
E
(
λ̄−2
ij(q),•,ϕ

)
E
(
τ−2
ij(q),ϕ

))
.

Assign: E
(
ϕij(q)

)
= µϕ

ij(q)
and E

(
ϕ2
ij(q)

)
= µ2,ϕ

ij(q)
+ diag

(
Σϕ
ij(q)

)
[ii] Update the parameters of the horseshoe prior from

q(λ̄2
ij(q),k,ϕ

|x) = IG(aλ̄,ϕ, bλ̄,ϕ) = IG

(
1,

E(ϕ2
ij,k(q))

2
+ E

(
1

υij(q),k,ϕ

))
,

q(υij(q),k,ϕ|x) = IG(aυ,ϕ, bυ,ϕ) = IG

(
1,E

(
1

λ̄2
ij(q),k,ϕ

)
+ b−2

ϕ E
(

1
τ2
ij,ϕ

))
,

q(τ2
ij(q),k,ϕ

|x) = IG(aτ,ϕ, bτ,ϕ) = IG

(
1, b−2

ϕ E
(

1
υij(q),k,ϕ

)
+ E

(
1

ξij(q),ϕ

))
,

q(ξij(q),ϕ|x) = IG(aξ,ϕ, bξ,ϕ) = IG

(
lϕ+1

2
, 1 +

∑lϕ
k=1 E

(
1

τ2
ij(q),k,ϕ

))
,

for k = 1, · · · , lϕ.

Assign: E
(
aλ̄,ϕ
bλ̄,ϕ

)
, E

(
aυ,ϕ
bυ,ϕ

)
, E

(
aτ,ϕ
bτ,ϕ

)
, and E

(
aξ,ϕ
bξ,ϕ

)
.

[iii] Update the latent quantile indicators, zij,t(q), from q(zij,t(q)|x) = GIG(1/2, δz , ρt,z) with

δz = E
(

1
σij(q)

)
κ21(q)

κ2
2(q)

, ρt,z = E
(

1
σij(q)

) {yij,t(q)−E(ϕij(q))
′f̂t}2+f̂t′Σϕij(q)f̂t

κ2
2(q)

,

for t = 1, · · · , T

Assign: E(zij,t(q)) =
√
ρt,zK3/2(

√
δzρt,z)

√
δzK1/2(

√
δzρt,z)

, E
(

1
zij,t(q)

)
=

√
δzK3/2(

√
δzρt,z)

√
ρt,zK1/2(

√
δzρt,z)

− 1
ρt,z

[iv] Update the factor regression variances, σij(q), from q(σij(q)|x) = IG(rσ , sσ) with
rσ = r0 + 3T and

sσ = s0 +
∑T
t=1

[
E
(

1
zij,t(q)

)
M

2κ2
2(q)

− κ2
1(q)

yij,t(q)−E(ϕij(q))
′f̂t

κ2
2(q)

+

(
1 +

κ2
1(q)

2κ2
2(q)

)
E(zij,t(q))

]
and

M =
{
yij,t(q) − E(ϕij(q))′f̂t

}2
+ f̂t

′
Σϕ
ij(q)

f̂t.

Assign: E
(

1
σij(q)

)
= rσ

sσ
.

end

end

end
[2] Update the diagonal elements of Ω from q(ωr|x) = IG(rω , sω) with

rω = rh + T/2 and sω = sh +
∑T
t=1(f̂r,t − F̂t−1ψ′

r)
2), for all r = 1, · · · , R.

Assign: E
(

1
ωr

)
= rω

sω
.

[3] Sample the off-diagonal elements of Ω, A, and the VAR coefficients Ψ
for r = 1 : R do

[i] Sample ψr and ar jointly from q(ψr,ar|x) = N(µψr ,Σ
ψ
r ), with µψr = Σψr

{
X′E(σ−1

ω )f̂r
}
,

Σψr =
{
X′E(σ−1

ω )X + Λ̃−1
r

}−1
, where X = [LF ′, LG′,E′

1:r−1]
′, er = f̂r − F̂E(ψr)′ −E′

1:r−1E(ar)′, and

Λ̃−1
r = diag

(
[E(λ̄−2

r,•,ψ),µr,a/Σr,a]
)
.

[ii] Update the parameters of the horseshoe prior from q(λ̄2r,s,ψ |x) = IG(aλ̄,ψ , bλ̄,ψ) = IG

(
1,

E(ψ2
r,s)

2
+ 1

E(υr,s,ψ)

)
,

q(υr,s,ψ |x) = IG(aυ,ψ , bυ,ψ) = IG

(
1,E

(
1

λ̄2
r,s,ψ

)
+ b−2

ψ E
(

1
τ2
r,ψ

))
,

q(τ2r,s,ψ |x) = IG(aτ,ψ , bτ,ψ) = IG
(
1, b−2

ψ E
(

1
υr,s,ψ

)
+ E

(
1

ξr,ψ

))
,

q(ξr,ψ |x) = IG(aξ,ψ , bξ,ψ) = IG

(
lψ+1

2
, 1 +

∑lψ
s=1 E

(
1

τ2
r,s,ψ

))
,

for s = 1, · · · , lψ .

Assign: E
(
aλ̄,ψ
bλ̄,ψ

)
, E

(
aυ,ψ
bυ,ψ

)
, E

(
aτ,ψ
bτ,ψ

)
, and E

(
aξ,ψ
bξ,ψ

)
.

end

end
Note: We use the rate parametrization of the IG distribution throughout. Kp(•) denotes the Bessel function of order p and L
denotes the Lag operator.
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Finally, note that the horseshoe priors take a slightly different form in our VB algorithm

with

ϕij(q)|
{
λ̄ij(q),k,ϕ, υij(q),k,ϕ

}lϕ
k=1

, τij(q),ϕ, ξij(q),ϕ ∼ N(0, Λ̄ij(q),ϕ), (34)

λ̄2ij(q),k,ϕ|υij(q),k,ϕ ∼ G−1
(
1

2
,

1

υij(q),k,ϕ

)
, for k = 1, · · · , lϕ,

υij(q),k,ϕ|τ2ij(q),ϕ ∼ G−1

(
1

2
,

1

b2ϕτ
2
ij(q),ϕ

)
, for k = 1, · · · , lϕ,

τ2ij(q),k,ϕ|ξij(q),ϕ ∼ G−1
(
1

2
,

1

ξij(q),ϕ

)
,

ξij(q),ϕ ∼ G−1
(
1

2
, 1

)
,

and

ψr|
{
λ̄r,s,ψ, υr,s,ψ

}lψ
s=1

, τr,ψ, ξr,ψ ∼ N(0, Λ̄r,ψ), (35)

λ̄2r,s,ψ|υr,s,ψ ∼ G−1
(
1

2
,

1

υr,s,ψ

)
, for s = 1, · · · , lψ,

υr,s,ψ|τ2r,ψ ∼ G−1

(
1

2
,

1

b2ψτ
2
r,ψ

)
, for s = 1, · · · , lψ,

τ2r,s,ψ|ξr,ψ ∼ G−1
(
1

2
,

1

ξr,ψ

)
,

ξr,ψ ∼ G−1
(
1

2
, 1

)
,

where bϕ and bψ are hyperparameters, which we set to 0.0001 in application.
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B Additional empirical results

B.1 Forecast evaluation

Figure 1: Cumulative quantile score (QS) loss for forecast horizon h = 6. Four models are
compared, QAR (yellow circled line), QAR-X (purple dashed line), QDFM (red dotted
line) and QFAVAR (blue solid line). The out-of-sample evaluation period shown on the
x-axis is 2011Jan to 2022Dec-h. First two rows show quantile scores for the 10th and 90th
percentiles of inflation and third and fourth rows show quantile scores for the 10th and
90th percentiles of industrial production.
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Figure 2: Cumulative quantile score (QS) loss for forecast horizon h = 12. Four models
are compared, QAR (yellow circled line), QAR-X (purple dashed line), QDFM (red dotted
line) and QFAVAR (blue solid line). The out-of-sample evaluation period shown on the
x-axis is 2011Jan to 2022Dec-h. First two rows show quantile scores for the 10th and 90th
percentiles of inflation and third and fourth rows show quantile scores for the 10th and
90th percentiles of industrial production.
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Figure 3: Cumulative quantile score (QS) loss for forecast horizon h = 24. Four models
are compared, QAR (yellow circled line), QAR-X (purple dashed line), QDFM (red dotted
line) and QFAVAR (blue solid line). The out-of-sample evaluation period shown on the
x-axis is 2011Jan to 2022Dec-h. First two rows show quantile scores for the 10th and 90th
percentiles of inflation and third and fourth rows show quantile scores for the 10th and
90th percentiles of industrial production.

B.2 Detailed quantile IRFs
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