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Abstract

We develop methods for Bayesian model averaging (BMA) or selection
(BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to
select between or average over all possible combinations of restricted PVARs
where the restrictions involve interdependencies between and heterogeneities
across cross-sectional units. The resulting BMA framework can find a parsi-
monious PVAR specification, thus dealing with overparameterization concerns.
We use these methods in an application involving the euro area sovereign debt
crisis and show that our methods perform better than alternatives. Our findings
contradict a simple view of the sovereign debt crisis which divides the euro
zone into groups of core and peripheral countries and worries about financial
contagion within the latter group.
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1 Introduction

This paper develops Bayesian methods for estimation and model selection with
large panel vector autoregressions (PVARs). PVARs are used in several research
fields, but are most commonly used by macroeconomists or financial economists
working with data for many countries. In such a case, the researcher may want
to jointly model several variables for each country using a VAR, but also allow for
linkages between countries. Papers such as Dees, Di Mauro, Pesaran and Smith
(2007) and Canova and Ciccarelli (2009) emphasize that PVARs are an excellent
way to model the manner in which shocks are transmitted across countries and to
address issues such as financial contagion that have played an important role in
recent years.1 As the global economy becomes more integrated, examining such
issues is increasingly important for the modern applied economist.

In that respect, we consider the case where we have N countries, each with G
macroeconomic variables observed for T periods. In such a setup, the PVAR is the
ideal tool for examining the international transmission of macroeconomic or finan-
cial shocks. A major difference between a PVAR and a univariate dynamic panel
regression is that the VAR specification can explicitly allow an endogenous variable
of interest (e.g. the i-th macroeconomic variable for the j-th country) to depend on
several lags of: i) the endogenous variable itself; ii) other macroeconomic variables
of that country; and iii) macroeconomic variables of all other N � 1 countries.
Thus, the PVAR can uncover all sorts of dynamic or static dependencies between
countries or the existence of heterogeneity in coefficients on the macroeconomic
variables of different countries. Additionally, given the autoregressive structure of
a PVAR, concerns about endogeneity are eliminated and the usual macroeconomic
exercises involving multiple-period projections in the future (e.g. forecast error
variance decompositions, or impulse responses) can be implemented.

However, this flexibility of the PVAR comes at a cost. The researcher working
with an unrestricted PVAR with P lags must estimate K = (NG)2 P autoregres-
sive coefficients, coefficients on any deterministic terms, and the NG(NG+1)

2
free

parameters in the error covariance matrix. In most cases, when the number of
countries N is moderate or large, the number of parameters might exceed the
number of observations available for estimation. Accordingly, interest centers on
various restricted PVAR models.

Many such restrictions are possible (and the methods developed in this paper
can easily be generalized to deal with any of them), but we focus on ones
used, e.g., in Canova and Ciccarelli (2013). These restrictions pertain to the
absence of dynamic interdependencies (DI), static interdependencies (SI) and cross-
section heterogeneities (CSH). DIs occur when one country’s lagged variables affect
another country’s variables. SIs occur when the correlations between the errors in

1Canova and Ciccerelli (2013) offers an excellent survey of the PVAR literature. The reader is
referred to this paper for an extensive list of papers using PVAR methods.
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two countries’ VARs are non-zero. CSHs occur when two countries have VARs with
different coefficients (i.e. homogeneity arises when the coefficients on the own
lagged variables for the two countries are exactly the same).2

The total number restrictions on DIs, SIs and CSHs we may wish to impose
is potentially huge. For instance, in our empirical work we have 10 countries
in the PVAR which leads to 90 DI restrictions to examine, 45 SI restrictions,
and 45 CSH restrictions which can be imposed in any combination. Thus, the
researcher is faced with an over-parameterized unrestricted model and a large
number of potentially interesting restricted models. This situation is familiar in
the BMA literature. Following this literature we rely on Markov Chain Monte Carlo
(MCMC) methods so as to avoid the huge computational burden of exhaustively
estimating every restricted model. MCMC methods allow for the joint estimation
of the PVAR parameters in each model along with the probabilities attached to
each model. Such algorithms are far from new in the literature. There are
several similar approaches used in traditional regression models, with notable early
contributions by George and McCulloch (1993, 1997) and Raftery, Madigan and
Hoeting (1997). In economics, BMA algorithms using MCMC methods have been
influential, particularly in the problem of finding relevant predictors for economic
growth (e.g., among many others, Fernández, Ley and Steel, 2001a,b; Eicher,
Papageorgiou and Raftery, 2010; Ley and Steel, 2012).

With regression models, there is a single dependent variable and the restrictions
considered are typically simple ones (e.g. a coefficient is set to zero). With
VARs, one has a vector of dependent variables, but the existing literature has still
worked with simple restrictions. In the VAR literature, stochastic search variable
selection (SSVS)3 methods have proved popular. The pioneering paper is George,

2In the panel regression literature it is common to assume homogeneity of coefficients across
countries (i.e. the coefficients on the explanatory variables are the same in each country). In the
PVAR literature, where the explanatory variables are lags of the dependent variables, this is harder
to justify. Consider, for instance, a differential Taylor rule such as the one usually defined in the
exchange rate literature (Molodtsova and Pappel, 2009) involving interest rates (it), inflation (�t)
and the output gap (yt):

it � i�t = �0 + �1�t + ��1��t + �2yt + ��2y�t + �3it�1 + ��3i�t�1;

where variables without stars denote domestic quantities, and variables with stars foreign quantities.
Homogeneity (pooling) is usually defined as the case where inflation and the output gap have the
same coefficients in both countries, i.e. �1 = ��1 and �2 = ��2. It is not customary to consider the
case where the coefficients on lagged interest rates are equal (i.e. �3 = ��3) since it is expected
that dynamics of variables of different countries will not be homogeneous. Additionally, working
with random effects or mean group estimators is not relevant in high dimensional PVARs, unless
we can assume sufficiently large number of observations T ; see Canova and Ciccarelli (2013) for a
discussion of such estimation issues.

3We use this as a general term for methods which use a hierarchical prior which allows a variable
to be selected (i.e. its coefficient estimated in an unconstrained manner) or not selected (i.e. its
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Sun and Ni (2008) and recent VAR extensions and applications include Koop
(2013) and Korobilis (2013). With PVARs, we have many dependent variables
and the restrictions can be more complicated. From an econometric perspective,
the contribution of this paper lies in extending previous VAR methods to deal
with the PVAR and the more complicated DI, SI and CSH restrictions. Since
we are not selecting a single variable, as the V in SSVS implies, but rather a
particular specification of a restricted PVAR, we name our algorithm Stochastic
Search Specification Selection (S4) for PVARs.

The other contribution of the paper is to use these methods in an empirical
study of financial contagion during the recent euro area sovereign debt crisis. Using
data on sovereign bond spreads, bid ask spreads and industrial production for euro
area countries, we use our PVAR methods to investigate the nature and extent
of spillovers within the euro area. We do find there are extensive links between
countries. However, these links do not correspond to a conventional division
of euro area countries into core and periphery countries and an accompanying
fear of financial contagion within the periphery countries. We do find two
groups of countries which are, in a sense we describe below, homogeneous. But
the division does not correspond closely with the conventional core/periphery
grouping. Furthermore, we find spillovers from one country to another, but these
spillovers are largely within the core countries or reflect core countries shocks
propagated to periphery countries, rather than the reverse.

The paper is organized as follows. In the following section we define the PVAR
and the restrictions of interest. The third section describes our S4 methods for
doing BMA and BMS with PVARs (with additional details provided in the Technical
Appendix). The fourth section contains a brief Monte Carlo study showing that
our methods are effective at choosing PVAR restrictions. Section 5 contains our
empirical application and the sixth section concludes.

2 Panel VARs

Let yit denote a vector of G dependent variables for country i (i = 1; ::; N) at time t
(t = 1; ::; T ) and Yt = (y01t; ::; y

0
Nt)

0. A VAR4 for country i can be written as:

yit = A1;iYt�1 + :::+ AP;iYt�P + "it (1)

where Ap;i are G � NG matrices for each lag p = 1; :::; P , and "it are uncorrelated
over time and are distributed asN (0;�ii)with �ii covariance matrices of dimension
G � G. Additionally, we define cov ("it; "jt) = E ("it; "jt) = �ij to be the covariance

coefficient set to zero or shrunk to being nearly zero). Other terminologies such as “spike and slab”
priors are sometimes used.

4For ease of exposition, the formulae in this section for our VARs do not include deterministic
terms or exogenous variables. These can be added with straightforward extensions of the formulae.
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matrix between the errors in the VARs of country i and country j. We refer to this
specification as the unrestricted PVAR.

Note that the unrestricted PVAR is very general and that lagged variables from
any country can influence any other country (e.g. lagged values of country 1
variables can impact on current country 2 variables) and the magnitude of such
influences are completely unrestricted (e.g. events in country 1 can have different
impacts on country 2 than on country 3). Similarly, contemporaneous relationships,
modelled through the error covariance matrices, are unrestricted so that, e.g.,
shocks in country 1 can be strongly correlated with shocks in country 2, but weakly
correlated with shocks in country 3.

Unrestricted PVARs such as (1) can suffer from concerns about over-parameterization
due to the high dimensionality of the parameter space. For instance, Canova and
Ciccarelli (2009) use data on four dependent variables (G = 4) for the G-7 countries
(N = 7) and one lag (P = 1). An unrestricted PVAR with such choices would have
784 VAR coefficients and 406 error variances and covariances to estimate.

One strand of the macro VAR literature relies on shrinkage and model selection
methods to deal with such high dimensional parameter spaces. For example,
Banbura et al. (2010) uses the Minnesota prior (Littermann, 1986) to esti-
mate VARs of large dimension and imposes shrinkage towards zero of irrelevant
coefficients. Papers such as Carriero, Clark and Marcellino (2011), Carriero,
Kapetanios and Marcellino (2009), Giannone, Lenza, Momferatou and Onorante
(2010), Gefang (2013), Koop (2013) and Korobilis (2013) use similar shrinkage
and model selection methods to estimate VARs with hundreds or even thousands
of coefficients. BMS and BMA applications in this strand of the literature simply
restrict each individual coefficient to be zero (or not). However, in a PVAR there
are a variety of restrictions of interest which reflect the panel nature of the data.
These are ignored in conventional large VAR approaches. Therefore, there can be
gains in not treating a PVAR in the same manner as a standard large VAR. Canova
and Ciccarelli (2013) provide an excellent survey of the various restrictions used
and what their implications are. In the introduction, we explained briefly the DI, SI
and CSH restrictions considered in this paper. Here we provide precise definitions.

DIs refer to links across countries through PVAR coefficients. In (1), the
endogenous variables for each country depend on the lags of the endogenous
variables for every country. It is often of interest to investigate if DIs exist and,
if not, to estimate restricted PVARs which lack such interdependencies. To formally
define DIs between countries j and k, we partition the PVAR coefficient matrices
(for p = 1; ::; P ) into G� G matrices Ap;jk which control whether lags of country k
dependent variables enter the VAR for country j. That is,
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Ap =

26664
Ap;1
Ap;2

...
Ap;N

37775 =
26664
Ap;11 Ap;12 ::: Ap;1N

Ap;21 Ap;22
. . . ...

... . . . . . . Ap;(N�1)N
Ap;N1 ::: Ap;N(N�1) Ap;NN

37775 : (2)

Within the unrestricted VAR, we can define N (N � 1) restrictions which imply
there are no DIs from country k to j by imposing the restriction that A1;jk = :: =
AP;jk = 0 for j; k = 1; ::; N and j 6= k. Note that the algorithm developed in this
paper will allow for selection between a large number of restricted models since we
are allowing for every possible configuration of DIs between countries. Using the
G-7 countries as an example, our algorithm could select a restricted PVAR that has
France exhibiting DIs with Germany, USA and Italy but not Canada, Japan and the
UK. Another restricted PVAR would have France exhibiting DIs with Germany, USA,
Italy and Canada but not Japan and the UK, etc.. Allowing for every country to have
DIs with any or all of the N � 1 remaining countries leads to N (N � 1) restricted
PVARs that our algorithm can choose between when investigating DIs. Note that
it is possible for such linkages between two countries to flow in one direction only.
For instance, it is possible that lagged German variables influence French variables
(and, thus, there are DIs from Germany to France), but that lagged French variables
do not influence German variables (and, thus, there are no DIs from France to
Germany).

SIs are modelled through the error covariance matrix. If �jk = 0, then there
are no SIs between countries j and k. We can define N(N�1)

2
restricted PVARs which

impose �jk = 0 for j; k = 1; ::; N and j 6= k. In contrast to the DI restrictions, these
are always symmetric. For instance, if there are SI’s from Germany to France, they
will also exist from France to Germany.

CSH occurs if the VAR coefficients differ across countries.5 Such homogeneity
occurs between two countries if Ap;jj = Ap;kk for j 6= k and p = 1; ::; P . Thus,
we can construct N(N�1)

2
restricted PVARs which impose homogeneity between two

different countries. We could also consider restrictions which impose homogeneity
of error covariances, but we do not do so in practice since such restrictions are
less likely to be reasonable in macroeconomic and financial applications than
homogeneity restrictions involving VAR coefficients.

Table 1 contains a list of the restrictions considered in this paper.

5Note that our definition of cross-country homogeneity involves only the VAR part of the model
for each country. For instance, it says country 1’s lagged dependent variables influence country
1’s variables in the same manner as country 2’s lagged dependent variables influence country 2’s
variables. It does not involve restricting, say, country 3’s lagged dependent variables to have the
same impact on country 1 as on country 2. Such an alternative could be handled by simply re-
defining the restrictions.
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Table 1: Possible Specification Restrictions in PVARs
Name Restriction Number
No DIs from
country k to j A1;jk = ::: = AP;jk = 0 N (N � 1)

No SIs between
countries k and j �jk = 0

N(N�1)
2

No CSH between
countries k and j

Ap;jj = Ap;kk
8 p = 1; ::; P

N(N�1)
2

Note that the number of restrictions we have described is potentially huge.
And there are many other restrictions which might be interesting in the context
of a particular empirical application. For instance, global VARs (see, e.g., Dees, Di
Mauro, Pesaran and Smith, 2007) can be obtained by imposing restrictions on Ap
such that only cross-country averages enter the PVAR. In the empirical work of this
paper, we will not consider global VAR restrictions, but note that they can easily be
accommodated in our approach.

3 Stochastic Search Specification Selection (S4)

To define our S4 algorithm, we begin by writing the PVAR more compactly as:

Yt = Zt�+ "t; (3)

where Zt = ING 
X 0
t, X

0
t =

�
I; Y 0

t�1; Y
0
t�2; :::; Y

0
t�P
�0, � = (vec (A1) ; :::; vec (AP ))0 is a

K � 1 vector containing all the PVAR coefficients, K = 1; :::; P (NG)2, and Yt, "t are
NG � 1 vectors (uncorrelated over time) with "t � N (0;�) for t = 1; ::; T . This is
the unrestricted PVAR.

The basic idea underlying SSVS as done, e.g., in George, Sun and Ni (2008),
can be explained simply. Let �j denote the jth element of �. SSVS specifies a
hierarchical prior (i.e. a prior expressed in terms of parameters which in turn have
a prior of their own) which is a mixture of two Normal distributions:

�jjj �
�
1� j

�
N
�
0; � 21

�
+ jN

�
0; � 22

�
; (4)

where j 2 f0; 1g is an unknown parameter estimated from the data. A Bernoulli
prior is used for j. The variable selection property of this prior arises by setting
� 21 to be small (or zero) and � 22 to be large (or infinite). Thus, if j = 1, the prior
has a large variance and, if j = 0, the prior has a small variance. Large variance
priors are relatively noninformative, allowing for a coefficient to be estimated in an
unrestricted fashion. Small variance priors are informative, shrinking the coefficient
towards the prior mean (which, in this case, is zero). In the limiting case when the
prior variance goes to zero, the prior becomes a spike at zero and the accompanying
coefficient is set to zero and the associated variable is deleted from the model.
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Another way of looking at such an approach is considered in Korobilis (2013)
who writes the model as:

Yt = Zt��+ "t (5)

where � is a matrix which can be used to do BMA or BMS In conventional SSVS, �
is a diagonal matrix with diagonal elements j 2 f0; 1g corresponding to each VAR
coefficient.

The basic ideas underlying our S4 algorithm can be expressed in terms of (4) and
(5). In this section, we outline how we do this, partly relying on a three country
example. The general case and other additional details are given in the Technical
Appendix.

We define the N (N � 1) vector DI , the N(N�1)
2

vector SI , and the N(N�1)
2

vector CSH , which control the DI, SI, and CSH restrictions, respectively and let
 =

�
DI ; SI ; CSH

�
.

Handling the DI and SI restrictions is fairly easy, since each involves restricting
a specific matrix of parameters to be zero (or not). For the DIs, DI is made up
of elements DIjk 2 f0; 1g, j = 1; :::; N , k = 1; :::; N , j 6= k. If DIjk = 0, then the
coefficients on the lags of all country k variables in the VAR for country j are set
to zero. Using a simple extension of the hierarchical prior in (4) and the methods
of George, Sun and Ni (2008), it is straightforward to produce MCMC draws of
DI . The only difference between our approach and that of George, Sun and Ni
(2008) is that each DIjk will apply to a whole block of parameters instead of a single
parameter.

For the SIs, SI is made up of elements SIjk 2 f0; 1g, j = 1; :::; N � 1, k =
j+1; :::; N . If SIjk = 0 then the block of the PVAR error covariance matrix relating to
the covariance between countries j and k is set to zero. In contrast to conventional
SSVS, SIjk will restrict an entire block of the error covariance matrix to be zero,
rather than a single element, but this involves only trivial changes to the algorithm
of George, Sun and Ni (2008).

Handling restrictions which do not simply restrict a vector or matrix of coeffi-
cients to be zero is more complicated, and treatment of this issue is a contribution
of this paper. CSH restrictions take this form. There are N(N�1)

2
such restrictions

and we investigate whether they hold by introducing restriction selection matrices:
�j;k for j = 1; ::; N � 1 and k = j + 1; ::; N . �j;k contains one dummy variable,
CSHjk 2 f0; 1g, which is used to estimate whether cross-country homogeneity exists
between countries j and k. For instance, if we had N = 3 and each of the three
VARs which make up the PVAR only had one coefficient (� = (�1; �2; �3)

0), then we
can define the matrices:

�1;2=

24 CSH12 1� CSH12 0
0 1 0
0 0 1

35 ; �1;3=
24 CSH13 0 1� CSH13

0 1 0
0 0 1

35 ; �2;3=
24 1 0 0
0 CSH23 1� CSH23

0 0 1

35 ;
8



where CSH =
�
CSH12 ; CSH13 ; CSH23

�
is the original vector of CSH restrictions

between countries 1 and 2, countries 1 and 3, and countries 2 and 3, respectively. If

homogeneity exists between countries 1 and 2 then CSH12 = 0 and �1;2� =

24 �2
�2
�3

35
so that the first and second coefficients are restricted to be equal to one another.
If instead these two countries are heterogeneous, CSH12 = 1 and �1;2 is the identity
matrix such that �1;2� = � and the coefficients are left unrestricted. By defining
matrices �1;3 and �2;3 in a similar fashion we can impose analogous restrictions
involving country 3.

If we define:
� = �1;2 � �1;3 � �2;3:

then we obtain a selection matrix that covers all possible combinations of CSH
restrictions. For instance, assume that there is homogeneity between countries 1
and 3 (so that CSH13 = 0) and the coefficients of countries 1 and 2, and countries 2
and 3 are heterogeneous (CSH12 = CSH23 = 1). In this case, it is easy to see that �
takes the form

� =

24 0 0 1
0 1 0
0 0 1

35 ;
so that the restricted coefficients matrix is �� = (�3; �2; �3). In this case, the first
and third countries coefficients are the same, thus imposing homogeneity between
them. If CSH1 = CSH2 = CSH3 = 0 then there is homogeneity among all countries
and in this case �� = (�3; �3; �3)

0.
We can generalize the procedure above when we have N countries to impose (or

not) the N (N � 1) =2 possible CSH restrictions and the DI restrictions if we write
the PVAR of (4) as:

Yt = Zt

N�1Y
j=1

NY
k=j+1

�j;k�+ "t (6)

= Zt��+ "t:

Once the PVAR is transformed in this way, sampling from the conditional posterior

of the restricted coefficients e� = N�1Y
j=1

NY
k=j+1

�j;k� = �� becomes a straightforward

problem. In particular, conditional upon draws of the restriction indicators, we have
a particular restricted PVAR. The parameters of this specific PVAR can be drawn
using standard formulae for restricted VAR models. We provide additional details
in the Technical Appendix.

Using this MCMC algorithm, we can find the posterior mode for  and this can
be used to select the optimal restricted PVAR, thus doing BMS. Or, if we simply
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average over all draws provided by the MCMC algorithm we are doing BMA. Our
empirical results use the BMA approach.

4 Monte Carlo Study

In order to demonstrate the performance of our algorithm, we carry out a small
Monte Carlo study. We consider a case where the number of observations is
fairly small relative to the number of parameters being estimated and a variety
of restrictions hold. In particular, we generate 1,000 artificial data sets, each with
T = 50 from a PVAR with N = 3, G = 2 and P = 1. Using the notation of (2), the
PVAR parameters are set to the values:

A1 =

26666664
0:7 0 0:2 0:2 0 0
0 0:7 0:3 0:3 0 0
0 0 0:2 0:4 0 0
0 0 0 0:3 0 0

0:3 �0:4 0 0 0:2 0:4
0:2 0:4 0 0 0 0:3

37777775 ;� =
26666664

1 0 �0:5 �0:5 0 0
0 1 �0:5 �0:5 0 0

�0:5 �0:5 1 0:5 0 0
�0:5 �0:5 0:5 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

37777775 :

The structure above implies that we have DIs from country 2 to country 1
and from country 1 to country 3. We have SIs between countries 1 and 2 and
cross-sectional homogeneity between countries 2 and 3. Put another way, the data
generating process imposes the following restrictions that we hope our S4 algorithm
will find:

1. A1;13 = A1;21 = A1;23 = A1;32 = 0

2. A1;22 = A1;33

3. �13 = �23 = 0

For each of our 1,000 artificial data sets we produce 55,000 posterior draws us-
ing our MCMC algorithm and discard the first 5,000 as burn in draws. Results pass
standard convergence diagnostics (e.g. inefficiency factors reveal that retaining
50,000 draws is more than enough for accurate posterior inference). The relatively
noninformative priors we use are described in the Technical Appendix.

To give the reader an idea of how well our algorithm is estimating the PVAR
parameters, the following matrices contain the averages (over the 1,000 artificial
data sets) of their posterior means.

10



A1=

26666664
:67 :11 :16 :26 �:01 :00

�:01 :68 :30 :32 :01 :00
:00 :00 :14 :37 :00 :00
:00 :00 :01 :28 :00 :01
:27 �:38 �:01 :00 :17 :34
:21 :39 :00 :01 :02 :29

37777775 ;� =
26666664

:98 �:02 �:47 �:48 :00 �:01
�:02 :99 �:46 �:45 �:01 :00
�:47 �:46 1:24 :42 �:01 :00
�:48 �:45 :42 1:24 :01 �:01
:00 �:01 �:01 :01 1:00 �:01

�:01 :00 :00 �:01 �:01 :90

37777775 :

Considering the relatively small sample size, these posterior means are quite close
to the true values used to generate the data sets.

For comparison, the following matrices present ordinary least squares (OLS)
estimates averaged over the 1,000 artificial data sets:

A1=

26666664
:64 :05 :22 :21 �:03 �:01
:03 :65 :37 :27 :04 :03
:02 :06 :08 :44 :00 �:05

�:07 �:04 �:05 :20 :07 :04
:32 �:39 :01 :03 :10 :37
:18 :31 �:04 :05 :03 :22

37777775 ;� =
26666664
1:02 �:05 �:48 �0:46 :02 �:02
�:05 :96 �:46 �0:42 �:01 :03
�:48 �:46 1:43 :41 �:01 :02
�:46 �:42 :41 1:40 :01 �:01
:02 �:01 �:01 :01 1:00 �:01

�:02 :03 :02 �:01 �:01 :87

37777775 :

The OLS estimates are similar to the ones produced by our S4 algorithm. However,
note that the OLS estimates do not do as good a job of shrinking to zero the
parameters which are truly zero.

We now turn to the issue of how accurate the S4 algorithm is in picking the
correct restrictions. Remember that the restrictions are controlled through the S4

dummy variables so that, for instance, CSH2;3 = 0 indicates that countries 2 and 3 are
homogeneous. In our MCMC algorithm, the proportion of draws of CSH2;3 = 0 will
be an estimate of the posterior probability that countries 1 and 2 are homogeneous
and, thus, that A1;22 = A1;33. Thus, we will use notation where p (A1;22 = A1;33)
is the posterior probability that countries 1 and 2 are homogeneous, averaged over
the 1000 artificial data sets (and adopt the same notational convention for the other
restrictions).

With regards to the DI restrictions we find the following:

p (A1;12 = 0) = :108
p (A1;13 = 0) = :997
p (A1;21 = 0) = :981
p (A1;23 = 0) = :994
p (A1;31 = 0) = :167
p (A1;32 = 0) = :999

:

It can be seen that the S4 algorithm is doing a very good job of picking up the correct
DI restrictions.
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With regards to the SI restrictions we find the following:

p (�12 = 0) = :144
p (�13 = 0) = :808
p (�23 = 0) = :836

:

Here S4 is also doing a good job in picking up the correct restrictions, although the
probabilities are smaller than those found for the DI restrictions.

With regards to the CSH restrictions we find the following:

p (A1;11 = A1;22) = :309
p (A1;11 = A1;33) = :304
p (A1;22 = A1;33) = :982

:

S4 is doing well at picking out the correct cross-sectional homogeneity restriction
between countries 2 and 3.

Overall, we find the results of our Monte Carlo study reassuring. This exercise
involved a sample size of only T = 50 observations in a PVAR with 57 unknown
parameters. Therefore, our S4 algorithm is doing well at picking the correct
restrictions in a case where the number of observations is small relative to the
number of parameters. We repeated this exercise with T = 100 but do not report
results here since the probabilities of the restrictions correctly holding are very
nearly one in every case.

5 Empirical Application

The issues of financial contagion and cross-country spillovers between sovereign
debt markets in euro area economies have figured prominently in debates about
the euro area debt crisis. A few examples of recent papers are Arghyrou and
Kontonikas (2012), Bai, Julliard and Yuan (2012), De Santis (2012) and Neri
and Ropele (2013). A common strategy in these papers (and many others) is to
develop a modelling approach involving sovereign bond spreads (reflecting credit
risk considerations), bid-ask spreads (to reflect liquidity considerations) and a
macroeconomic variable. Discussion is often framed in terms of core (Germany,
Netherlands, France, Austria, Belgium and Finland) and periphery (Greece, Ireland,
Portugal, Spain and Italy) countries.

Inspired by this literature, we use monthly data from January 1999 through
December 2012 on the 10 year sovereign bond yield, the percentage change in
industrial production and the average bid-ask spread averaged across sovereign
bonds of differing maturities for the core and periphery countries. Following
a common practice, we take spreads relative to German values and, hence, we
leave Germany out of our set of countries. Because the 10-year bond yields and
the associated bid-ask spreads are nonstationary time series, we first difference

12



them. When we produce impulse responses, we transform back to levels so they
do measure responses of the spreads themselves. Thus, we have 168 monthly
observations for 3 variables for 10 countries. We include an intercept in each
equation. Our PVARs have a lag length of one, which is a reasonable assumption for
financial variables. Even so, the unrestricted PVAR has 1395 parameters to estimate
and is seriously overparameterized. Complete details about the priors are given in
the Technical Appendix.

Remember that our full approach involves working with the unrestricted PVAR
with the S4 prior which allows for selection (or not) of restrictions involving
dynamic interdependencies (DI), static interdependencies (SI) and cross-section
homogeneities (CSH). Inspired by similar choices in Canova and Ciccarelli (2009),
we begin estimating the following models:

1. M1: This is the full model with DI, SI and CSH restriction search.

2. M2: This is the model with DI and SI restriction search (no search for CSH).

3. M3: This is the model with DI restriction search (no search for SI and CSH).

4. M4: This is the model with CSH restriction search (no search for DI and SI).

5. M5: This is the model with SI restriction search (no search for DI and CSH).

6. M6: This is the model which reduces the PVAR to 10 individual country VARs
(i.e. DI and SI restrictions are imposed and not searched - no CSH restrictions
are applied).

7. M7: This is M6 with CSH additionally imposed (i.e. individual country VARs
which are also homogeneous).

8. M8: This is the full unrestricted PVAR model without any restriction searches
(i.e. treating it as a large VAR).

Models M2 through M8 are obtained by restricting the elements of  as
appropriate. For instance, M2, where we do not search for CSH restrictions, is
obtained by setting CSHjk = 1 for all j and k, but otherwise is identical to M1 in
every aspect. M6 is obtained by setting DIjk = SIjk = 0 for all possible j and k,
but otherwise is identical to M1, etc. Thus, we can be certain that any differences
across models are solely due to differences in which restrictions are imposed.

We begin by presenting information on which of M1 through M8 is supported
by the data using two popular methods of model comparison. Table 2 presents
the Bayesian information criterion (BIC) and Deviance information criterion (DIC)
for each model. BIC was derived as an approximation to the log of the marginal
likelihood. DIC was developed in Spiegelhalter, Best, Carlin and van der Linde
(2002) and is an increasingly popular model selection criterion when MCMC
methods are used.
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Table 2: Model fit
Method M1 M2 M3 M4 M5 M6 M7 M8

BIC -2365 -1149.86 -1132.80 -2018.24 -271.92 -1444.36 -1885.84 -271.39
DIC -59.07 -52.22 -52.22 -56.71 -50.28 -53.12 -55.43 -50.29

The main message from Table 2 is that our full approach, M1, does best and
the large VAR approach (M8) does worst, indicating that our S4 prior which takes
into account the panel structure of the model can lead to big improvements. More
subtly, it can be seen that most of the benefits from using the S4 prior (relative
to a large VAR) comes from the ability to impose cross-sectional homogeneities.
This follows from the fact that M4, which only allows for the imposition of such
homogeneities, is the second best model and is appreciably better than any of the
approaches other than M1. Nevertheless, using an S4 prior which allows for DI and
SI restriction search does have appreciable value since M1 is clearly better than M4.
The ability to impose static interdependencies is of little benefit in this data set since
M5 (which only allows for their imposition) is only slightly better than M8.

What kind of restrictions does our preferred M1 model find? Table 3 addresses
this question. Note that we have 90 possible DI, 45 CSH and 45 SI restrictions.
Recall that we impose restrictions through  which is a vector of dummy variables.
We classify a restriction as being imposed if the MCMC algorithm calculates the
probability that the appropriate element of  is zero to be greater than a half.
Otherwise we classify the restriction as not being imposed. Our model is imposing
a large number of them, so that it is easier for Table 3 to list the cases where the
restrictions are not imposed. For the case of DI and SI, these unrestricted cases are
where there are interlinkages between countries. So an examination of Table 3 will
clearly show where such linkages exist. Country pairs not listed in Table 3 are found
to be not interlinked.

Consider first the cross-sectional homogeneities. This is the category of
restrictions which is most often rejected. 24 of the 45 possible restrictions are
not imposed. By examining which countries are not listed in the CSH column of
Table 3, it can be seen that the countries are being divided into two groups. S4

is finding the VAR coefficients of Austria, Belgium, Finland, Netherlands, Portugal
and Spain to be similar enough to one another so as to impose the CSH restrictions.
And another four (France, Greece, Ireland and Italy) are also homogeneous with
one another, but different from the first homogeneous group. Thus, similar to the
conventional core versus periphery split used in this literature, we are finding two
groups of countries. But our division into two groups bears little resemblance to
the core versus periphery division. The first group, in particular, adds the typically-
peripheral Portugal and Spain to the core countries. The second group adds France,
typically considered a core country, to three peripheral countries. We stress that
our definition of cross-sectional homogeneities only involves own country variables
and not linkages between countries. For instance, a finding that France and Greece
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are homogeneous means that a VAR containing only French variables and a VAR
containing only Greek variables have very similar estimated coefficients. Such a
finding would say nothing about how other-country variables impact on France
or Greece. Nevertheless, it is striking that we are finding such homogeneity, but
that the resulting grouping does not coincide with the conventional core versus
periphery division.

Table 3 shows that many SIs exist. The main pattern here is that the small
countries of Austria, Belgium and Finland have SIs with every other country. These
three countries account for 24 out of 25 SIs listed in the table. The only other SI is
between France and Greece. This finding that small countries are quickly affected
by happenings elsewhere in the euro area is sensible. However, it is in contradiction
with some versions of the financial contagion story which would argue that events
in one peripheral country could quickly spillover to other peripheral countries. Note
that, with the single France-Greece exception, none of the peripheral countries
exhibits SIs with any country other than Austria, Belgium and Finland.

It is worth stressing that our definition of SIs implies, e.g., that the entire G�G
block of the error covariance matrix relating to covariances between France and
Greece is non-zero. So we do not present a more refined study of the nature of
these contemporaneous linkages. For instance, we cannot make statements such
as: “we are finding SIs between the French and Greek bond yields, but not between
French and Greek industrial production.” Adding such refinements would be a
straightforward extension of our approach, but would lead to a much larger model
space.

Finally consider the DIs. Remember that these may go from one country
(labelled “From” in Table 3) to another country (labelled “To”) but do not have to go
in the reverse direction. So we find that lagged French variables can appear in the
VAR for Greece, but not vice versa. The main pattern is that the peripheral countries
lagged dependent variables never appear in any of the core countries’ VARs. That is,
there are many DIs in Table 3, but it is never the case that occurrences in peripheral
countries are driving variables in core countries (nor other peripheral countries).
Another interesting finding is that Portugal does not appear in this column of Table
3 at all and Spain only appears once. Again, we are finding a story which is not
consistent with two common views of the euro zone. We are not finding there is a
reasonably homogenous group of core and periphery countries. Nor are we finding
support for a financial contagion story where happenings in the periphery spill over
to the core or other peripheral countries.
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Finally we carry out an impulse response analysis to investigate spillovers of
financial shocks across the euro area. For the sake of brevity, we focus on a single
shock and ask what would happen to interest rate spreads around the euro area if
the Greek 10-year bond rate increased unexpectedly by 1% relative to the German
rate. Figures 1 and 2 plot these impulse responses for the unrestricted PVAR model,
M8, and our panel S4 model, M1, respectively. The black line in the figures is the
posterior median of the impulse responses and the shaded region is the credible
interval from the 16th to 84th percentile. To aid in comparability, we have used the
same X-axis scale in the two figures. The results in Figure 2 can be interpreted as
BMA results in the sense described at the end of Section 3.

It can be seen that the main impact of the use of S4 methods is precision.
The impulse responses coming from our S4 approach are much more precisely
estimated than those produced by an unrestricted, over-parameterized PVAR. This
improvement in precision can lead to improved policy conclusions. For instance,
the unrestricted VAR would suggest there is no effect in the Netherlands from a
Greek shock since the bands cover zero completely. However, our panel S4 approach
predicts that there is a slight increase in the Dutch bond rate for several months.

The point estimates of the impulse responses in Figures 1 and 2 tend to be
similar to one another. However, there are some differences. For instance, for
Ireland the point estimates of the impulse responses from the unrestricted model,
M8, are counter-intuitively negative at short horizons, whereas with our approach
they are more reasonably positive. A similar thing happens for Spain. Thus,
our approach is leading to impulse responses which are not only more precisely
estimated, but also more sensible.
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Responses to a shock to Greek bond yields from the unrestricted model, M8.
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Responses to a shock to Greek bond yields from our model, M1.

6 Conclusions

In a globalized world, PVARs are an increasingly popular tool for estimating cross-
country spillovers and linkages. However, unrestricted PVARs are often over-
parameterized and the number of potential restricted PVAR models of interest can
be huge. In this paper, we have developed methods for dealing with the huge
model space that results so as to do BMA or BMS. These methods involve using a
hierarchical prior that takes the panel nature of the problem into account and leads
to an algorithm which we call S4.

Our empirical work shows that our methods work well at picking out restrictions
and selecting a tightly parameterized PVAR. Our findings are at odds with simple
stories which divide the euro zone into a group of core countries and one of pe-
ripheral countries and speak of financial contagion within the latter. Instead we are
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finding a more nuanced story where there are groups of homogeneous countries,
but they do not match perfectly with the standard grouping. Furthermore, we do
not find evidence of interdependencies within the peripheral countries such as the
financial contagion story would suggest.
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Technical Appendix

We write this technical appendix for P = 1 (the value used in our empirical work)
for notational simplicity. Formulae easily generalize for longer lag lengths. In this
case, we can simplify our PVAR notation of (1) and (2). The VAR for country i,
i = 1; :::; N is of the form

yit = AiYt�1 + "it (A.1)
= Ai1y1t�1 + :::+ Aiiy1t�1 + :::+ AiNyNt�1 + "it;

where E ("it"0it) = �ii and E
�
"it"

0
jt

�
= �ij, i 6= j, i; j = 1; :::; N and � is the full error

covariance matrix for the entire PVAR. For future reference, we also define the upper
triangular matrix 	 through the equation � = 	�1

0
	�1 which is partitioned into

G � G blocks 	ii and 	ij conformably with �ii and �ij, respectively. In addition,
we denote the elements of the diagonal blocks of 	ii as  iijk. George, Sun and
Ni (2008) also parameterize their model in terms of 	. Smith and Kohn (2002)
provide a justification and derivation of results for the prior we use for 	.

6.1 Stochastic Search Specification Selection (S4): Hierarchical
Prior

The DI, SI and CSH restrictions are given in Table 1. They are imposed through
the vectors of dummy variables DIij , DIij and CSHij described in Section 3. Our S4

algorithm is based on a hierarchical prior which allows for their imposition. This is
done through the following priors:6

1. DI prior:

vec (Aij) �
�
1� DIij

�
N
�
0; � 21 � I

�
+ DIk N

�
0; � 22 � I

�
; (A.2)

where � 21 is small and � 22 large so that, if DIij = 0, Aij is shrunk to be near
zero and, and if DIij = 1, a relatively noninformative prior is used. The
specification selection indicator for this DI restriction has prior

DIij � Bernoulli
�
�DI

�
: (A.3)

2. CSH prior:

vec (Aii) �
�
1� CSHij

�
N
�
Ajj; �

2

1
� I

�
+ CSHij N

�
Ajj; �

2

2
� I

�
; 8 j 6= i;

(A.4)
6In our empirical work, we also include a vector of intercepts in the PVAR. For these, we use a

noninformative prior which is a Normal prior with a very large variance.
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where �2
1

is small and �2
2

is large so that, if CSHij = 0, Aii is shrunk to be
near Ajj, and if CSHij = 1, a relatively noninformative prior is used. The
specification selection indicator for this CSH restriction has prior:

CSHij � Bernoulli
�
�CSH

�
; (A.5)

for i = 1; :::; N , j = i; :::; N � 1.

3. SI prior:

vec (	ij) �
�
1� SIij

�
N
�
0; �21 � I

�
+ SIij N

�
0; �22 � I

�
; (A.6)

where �21 is small and �22 large so that, if SIij = 0, 	ij (and, thus, �ij) is shrunk to be
near zero, and if SIij = 1, a relatively noninformative prior is used. The specification
selection indicator for this SI restriction has prior:

SIij � Bernoulli
�
�SI
�
: (A.7)

This completes description of the hierarchical prior we use relating to the
restrictions. We also require a prior for the error variances, which are not subject to
any restrictions. We do this through the following prior:

 iikl �
(

N (0; �22) ; if k 6= l

G
�
�
1
; �
2

�
if k = l

; (A.8)

where G (:; :) denotes the Gamma distribution.
These priors depend on prior hyperparameters (� 21; �

2
2),
�
�2
1
; �2
2

�
, (�21; �

2
2),
�
�
1
; �
2

�
and

�
�DI ; �SI ; �CSH

�
. We set � 21 = �2

1
= �21 = 0:01, thus ensuring tight

shrinkage towards the restrictions. For the other hyperparameters we use relatively
noninformative choices. We set � 22 = �2

2
= �22 = 10, �

1
= �

2
= 0:01 and

�DI = �SI = �CSH = 1
2
. The last of these implies that, a priori, each restriction

is equally likely to hold as not.

6.2 Stochastic Search Specification Selection (S4): MCMC Algo-
rithm

Our MCMC algorithm requires minor alterations to that given in George, Sun
and Ni (2008). In essence, George, Sun and Ni (2008)’s SSVS prior is (con-
ditional on variable selection indicators) a Normal prior which combines with
a Normal likelihood in a standard way. Our S4 prior is also a Normal prior
(albeit of a different form than the SSVS prior) which will also combine with a
Normal likelihood in a standard way. Hence, we do not write out the formulae
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in detail but give a heuristic summary of our MCMC algorithm. The reader
can find precise details in our MATLAB code available through the website:
https://sites.google.com/site/dimitriskorobilis/matlab.

The MCMC algorithm involves the following steps:

1. Sample � from a Normal posterior conditional on �, DI and CSH . In order
to impose the CSH restriction we need to create the matrix � defined in the
main text.7 For imposing the DI restrictions based on the values of the vector
DI , use the procedure of George, Sun and Ni (2008).

2. Sample each DIij and CSHij from its Bernoulli posterior conditional on �
and �. The Bernoulli probability is based on the prior and the value of the
likelihood function when DIij

�
or CSHij

�
= 1 and when DIij

�
or CSHij

�
= 0.

3. Sample  iikl from its Normal conditional posterior (conditional on all other
model parameters) if k 6= l, and from its Gamma posterior (conditional on all
other model parameters) if k = l.

4. Sample vec (	ij) from its Normal conditional posterior distribution (condi-
tional on other parameters) as in George, Sun and Ni (2008).

5. Sample each SIij from from its Bernoulli posterior conditional on � and �.
The Bernoulli probability is based on the prior and the value of the likelihood
function when SIij = 1 and when SIij = 0.

6. Calculate � using � = 	�10	�1 and go to step 1.

Our empirical results using the euro area data set are produced using 1,100,000
MCMC draws for each model. An initial 100,000 draws are discarded and, from the
remaining 1,000,000, every 100th draw is retained. Standard MCMC convergence
diagnostics indicate convergence has been achieved.

7This is an approximation in the sense that our CSH prior only approximately imposes restrictions
whereas by drawing � conditional on � we are exactly imposing CSH restrictions.
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