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Abstract 

An overlapping generations model with long run inflation risk and a cash-in-advance 

constraint is used to derive a second-order accurate closed-form solution for the inflation risk 

premium on long-term government debt. The model predicts that the inflation risk premium 

depends crucially on the relative importance of nominal bonds and capital as sources of 

retirement consumption. In a calibrated model the predicted risk premium is non-trivial under 

plausible levels of risk aversion. The cash-in-advance constraint is crucial for this result.   

Keywords: government debt; inflation risk premium; overlapping generations. 

1 Introduction 

The inflation risk premium – the compensation demanded by risk-averse nominal 

bondholders for bearing inflation risk – is of clear practical importance. For instance, the 

question of whether it is optimal to issue indexed government debt will depend in part on the 

cost of financing debt repayments. Other things being equal, a positive inflation risk premium 

implies that government could borrow more cheaply by issuing debt that is indexed to the 

price level. This strategy would enable the government to finance more spending for any 

given path of taxes, or to keep spending unchanged in real terms while permanently lowering 

taxes. Neither of these effects is likely to be trivial. Moreover, as Bernanke (2004) notes, 

estimates of the inflation risk premium enable policymakers to make inferences about 

inflation expectations using break-even inflation rates – the difference between nominal and 

indexed yields on bonds of the same maturity. Hence, the inflation risk premium matters. 

In a recent survey, Bekaert and Wang (2010) note that most empirical estimates of inflation 

risk premia are robustly positive, with some recent estimates being as large as 100 basis 

points. To better understand the economic factors that drive inflation risk premia, several 

recent papers have computed inflation risk-premia in non-linear New Keynesian models 

(Andreasen, 2012; De Paoli et al., 2010; Hördahl et al., 2008; Ravenna and Seppälä, 2007). 

Because nominal prices are sticky in these models, monetary policy has real effects. As a 

result, the inflation risk premium – the covariance between the stochastic discount factor and 

inflation – depends crucially on the shocks that hit the economy and the way that monetary 

policy responds to these shocks. For example, using a standard New Keynesian model, De 

Paoli et al. (2010) find that the sign of the inflation risk premium depends crucially on 

whether the economy is dominated by productivity or monetary policy shocks: it is positive 

in a world dominated by productivity shocks but negative when monetary policy shocks 

dominate. More recently, Andreasen (2012) estimates a medium-scale New Keynesian model 
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of the UK economy that allows for time-varying bond risk premia. He concludes that there 

was a substantial fall in nominal term premia in the 1990s caused by a fall in inflation risk 

premia that was driven by preference, investment, and fixed cost shocks, and a more 

aggressive response to inflation by the Bank of England. 

This theoretical literature has improved our understanding of the factors that drive inflation 

risk premia, but the available studies are confined to short and medium-term maturities.
1
 This 

paper aims to fill this gap by studying long-term inflation risk premia in a general equilibrium 

model with long run inflation risk. There are several good reasons to be interested in long-

term maturities such as 20-30 years. First, long-term government debt plays an important role 

in many developed economies and accounts for a non-trivial share of total marketable 

government debt.
2
 Second, the available empirical evidence suggests that the inflation risk 

premium on long-term government debt is somewhat higher than that on short-term debt 

(Haubrich et al., 2008; Reschreiter, 2004).
3 

Third, long-term nominal interest rates matter for 

the transmission mechanism of monetary policy, so tracing out the impact of monetary policy 

on long rates is an important task for researchers and policymakers. Amongst other things, 

this requires an understanding of which factors matter for inflation risk premia, and why.  

This paper makes two contributions that improve of understanding of long-term inflation risk 

premia. First, an overlapping generations model with long run inflation risk and a cash-in-

advance constraint is used to derive a second-order-accurate closed-form solution for the 

inflation risk premium on long-term government debt.
4
 The model predicts that the risk 

premium depends crucially on the relative importance of nominal bonds and capital as 

sources of retirement consumption. This finding has intuitive appeal since we would expect 

compensation for inflation risk to depend on the extent which households are exposed to 

unanticipated inflation through nominal asset holdings. In a seminal paper, Doepke and 

Schneider (2006) show that, in the postwar period, the US economy has been quite exposed 

to such fluctuations: a moderate episode of unanticipated inflation implies a substantial 

wealth loss for old agents, the main bondholders in the economy.
 5

 Likewise, the old in 

Canada lose out significantly during periods of unanticipated inflation, owing in part to their 

substantial holdings of nominal government debt (Meh and Terajima, 2011; Meh et al. 2010). 

The model presented here is consistent with the old being hit by unanticipated inflation 

because it is a standard overlapping generations model in the spirit of Champ and Freeman 

(1990) and Hatcher (2014) where the young save for their old age (when they are retired) by 

holding positive amounts of nominally-denominated government debt. 

                                                           
1
 De Paoli et al. (2010) report numerical results for 1-quarter bonds only; Andreasen (2012) and Ravenna and 

Seppälä (2007) report results for 5-year and 10-year bonds, and Hördahl et al. (2008) report results for 

maturities ranging from 1 quarter up to 10 years. 

2
 For example, bonds with maturities exceeding 15 years averaged around one-third of outstanding UK 

marketable debt over the period 2002-2012. In Canada, 30-year bonds accounted for around one-fifth of 

outstanding marketable debt in 2008 and an average share of around 15% over the period 2008 to 2012.   

Data sources: Historical Data, Debt Management Office UK; Department of Finance Canada (2011).   

3
 Reschreiter (2004) does not estimate the inflation risk premium directly, but he finds that UK borrowing costs 

could be reduced significantly by issuing medium and long-term inflation-indexed bonds. 

4
 Because the solution is second-order accurate, the inflation risk premium is constant over time. 

5
 For instance, based on 1989 data, a fully unanticipated inflation of 5%  that lasts 10 years produces a wealth 

loss relative to average net worth of 7% for the 66-75 age group and 10% for the over 75s.    
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The second contribution is to show that the quantitative inflation risk premium predicted by 

the model is non-trivial under plausible calibrations of risk aversion. In particular, the model 

gives an annualized inflation risk premium of around 20 basis points under the baseline 

calibration. This number is of the same order of magnitude as most empirical estimates of 

inflation risk premia and fairly robust in sensitivity analysis. By comparison, the New 

Keynesian literature discussed above has struggled to generate sizeable inflation risk premia 

under standard calibrations of risk aversion. For instance, Ravenna and Seppälä (2007), 

Hördahl et al. (2008) and De Paoli (2010) all find that typical calibrated New Keynesian 

models with external habit formation predict inflation risk premia of less than 10 basis 

points.
6
 By contrast, Andreasen (2012) finds an average inflation risk premium on 5-year 

bonds of around 50 basis points in an estimated New Keynesian model of the UK economy, 

but this figure relies crucially on high risk aversion through Epstein-Zin preferences. 

Regarding empirical studies, there is a large recent literature which estimates no-arbitrage 

affine models of the term structure and focuses mainly on 5-year and 10-year bond 

maturities.
7
The bottom line from this literature is that the average inflation risk premium in 

the Euro Area is quite modest at around 20 basis points (e.g. Hördahl and Tristani, 2012), but 

both the US and UK appear to have substantial average inflation risk premia, with the most 

likely range being 50 to 100 basis points in the UK (Andreasen, 2012; Joyce et al., 2010) and 

50 to 120 basis points in the US (e.g. Ang et al., 2008; Chernov and Mueller, 2012).  

An additional finding is that the cash-in-advance constraint is crucial for producing a sizeable 

inflation risk premium. This is for two reasons. First, it implies that inflation is positively 

related to money supply growth but inversely related to retirement consumption. As a result, 

the stochastic discount factor and inflation are more strongly correlated than in the absence of 

the cash-in-advance motive. Second, the cash-in-advance constraint implies that inflation risk 

depends on both productivity risk and monetary volatility, whereas only monetary volatility 

matters when the cash-in-advance motive is absent. Consequently, inflation risk rises under 

cash-in-advance and pushes up the inflation risk premium. 

The remainder of the paper proceeds as follows. Section 2 sets out the model. In Section 3, a 

closed-form analytical solution for the inflation risk premium is derived and discussed.  

Section 4 compares the predicted inflation risk premium with estimates in the theoretical and 

empirical literature. Section 5 investigates robustness. Finally, Section 6 concludes.                  

2. Model 

The model is a version of Diamond’s (1965) model where the young save for old age using 

government bonds and capital.
8
 It contains three sectors: a household sector, a government 

sector, and a firm sector devoted to the production of a single output good. These sectors are 

discussed in this section along with the model’s equilibrium conditions. 

 

 

                                                           
6
 Ravenna and Seppälä (2007) report negative inflation risk premia. De Paoli et al. (2010) find that the inflation 

risk premium can be positive or negative depending on shock composition. In Hördahl et al. (2008), the inflation 

risk premium is positive over a wide range of maturities but does not exceed 1 basis point.   

7
 For a review, see Bekaert and Wang (2010). A brief review is also provided in Section 4.3 of the present paper. 

8
 Diamond (1965) studies a real economy where consumers hold indexed government debt and capital. 
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2.1 Consumers 

 

Consider a two-period overlapping generations model similar in spirit to Diamond (1965), 

Champ and Freeman (1990) and Hatcher (2014).
9
 Each generation supplies one unit of labour 

in the first period, and retires in the second period. Utility is derived from consumption in 

both periods, and there is no bequest motive. The number of generations born in each period 

is normalized to 1. Consumption by the young is denoted by ct,y. The young are subject to a 

lump-sum tax Tt. Their after-tax wage income can used for consumption in the same period 

or allocated to three assets – capital, kt+1, indexed government bonds, bi,t+1, and nominal 

government bonds, bn,t+1 – in order to finance consumption in old age, ct+1,o. In addition, the 

young purchase all the nominal money stock, Mt, from the current old in order to finance part 

of their consumption in retirement. Since there are no bequests, the old consume all their 

asset income. In addition, they receive lump-sum monetary transfers TRt before they sell their 

money holdings to the young.
10

 The nominal money stock in period t grows at rate θt. There 

are two sources of aggregate risk in the economy: a productivity shock and money supply 

shocks. Each period lasts N years in total.   

Capital, k, is used an input in production next period, after which time its productive value is 

zero (i.e. there is full depreciation). Capital yields a risky return rk,t+1.  Bonds take the form of 

long-term government debt with maturity N years. Indexed bonds pay a riskless real return rt
 
, 

and nominal bonds a riskless nominal return Rt. These returns are endogenously determined 

so that the markets for indexed and nominal bonds clear.
11 

Because inflation cannot be 

forecast with certainty, nominal bonds pay a risky
 
real return rn,t+1

 
= Rt /Пt+1, where Пt+1 

≡Pt+1/Pt is the rate of inflation. The real return on money balances is thus rm,t+1 = 1/ Пt+1. A 

positive demand for money is motivated by a cash-in-advance constraint on old age 

consumption. Following Hahn and Solow (1995), the old are required to purchase a fraction δ 

of consumption using money balances. Hence Mt+1 ≥ δPt+1ct+1,o , where Mt+1 = Mt + TRt+1 is 

the post-transfer level of money holdings of the old. This kind of cash-in-advance constraint 

has been used in several recent papers which use overlapping generations models with perfect 

foresight to address issues of optimal monetary policy (see e.g. Michel and Wigniolle, 2005; 

Gahvari, 2007). As in these papers, the cash-in-advance constraint is assumed to
 
bind. 

In real terms, the binding cash-in-advance constraint implies that 

  tcm ott           , ,11           (1) 

where 1,1,1   trealttmt TRmrm , tttreal PTRTR /,   and ttt PMm / . 

The budget constraints of the young born in period t are 

ttntitttyt mbbkTwc   1,1,1,                   (2) 

1,1,1,1,1,11,,1   trealttmtntntitttkot TRmrbrbrkrc       (3) 

                                                           
9
 In Champ and Freeman (1990) consumers hold money, capital and nominal government debt, but the inflation 

risk premium is zero. Hatcher (2014) considers an overlapping generations model with nominal and indexed 

debt and an inflation risk premium, but money is not introduced by a cash-in-advance constraint in his model.   

10
 This assumption ensures that the entire money stock is passed from the current old to the current young.  

11
 These returns are dated at time t because they clear the markets for bonds at the date when bonds are 

purchased, i.e. at end of period t. 
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Consumers have CRRA preferences. The young of period t solve the following problem: 
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where β is the discount factor and γ is the coefficient of relative risk aversion. 

The first-order conditions are as follows:
12
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where  

  )/( ,,11 ytott ccsdf and θt+1, the money growth rate, is given in Section 2.3.2. 

Notice that these Euler equations are non-standard due to the inclusion of the term multiplied 

by the coefficient δ, the fraction of old-age consumption that must be purchased using 

money. Setting δ = 0 gives standard Euler equations of the form 1 = E[sdf.rj] for j = {k, n, i}. 

2.2 Firms 

The production sector consists of a representative firm that produces output by combining 

capital and labour in a Cobb-Douglas production function. The share of capital in output is 

equal to α and the labour share is 1–α. The firm hires capital and labour in competitive 

markets so as to maximise current profits. Total factor productivity in period t is denoted At.  

The real wage and the return on capital are given by: 

  ttttktt kAkryw )1(,          (8) 

 1

, /   tttttk kAkyr         (9) 

Productivity follows an AR(1) process in logs: 

 ttAt eAA  1lnln                                (10) 

where et is an IID-normal innovation with mean zero and standard deviation σA. 

2.3 Government 

The government conducts fiscal policy (taxes and transfers), sets the total supply of 

government debt b = bi
 
+ bn, and commits to a money supply rule. Both indexed and nominal 

debt are in non-negative supply, so bi, bn  ≥ 0. Because the analytical results that follow are 

                                                           
12

 A full derivation of these first-order conditions is provided in Appendix A. 
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general, no bond supply rule is specified at this stage. However, it should be noted that the 

analytical results rely on the assumption that the bond supply equation is such that the model 

has a unique steady-state around which the model can be approximated. 

2.3.1 Fiscal policy  

Real government spending is assumed, for simplicity, to be a constant fraction 0 < ϕg < 1 of 

GDP, so that gt = ϕgyt. Given bond prices, the supply of government debt, and the path of 

government spending, lump-sum taxes Tt are adjusted to ensure that the government budget 

constraint holds in every period. The lump-sum transfer to old generations is financed 

printing money, so it does not enter the government budget constraint.          

In real terms, the government budget constraint is given by  

 tntntntittitt brbbrbTg ,,1,,11,                                (11) 

2.3.2 Monetary policy and long run inflation risk 

In order to model long run inflation risk, it is assumed that government follows a money 

supply rule that implies base-level drift at a yearly horizon, similar to Hatcher (2014). In 

particular, the nominal money supply at the end of year j is given by
13
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where Φ > 0 and εj is an IID-normal money supply innovation with mean zero and standard 

deviation σM  that hits the economy in year j.
14

 

Since each period in the model lasts N years and the money supply is the end-of-year stock, 

Equation (12) implies that the nominal money supply in any period t is given by 
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1 ,11 )exp(                             (13) 

where the money supply innovations have been indexed by j = 1,2,..,N  to indicate the year of 

period t in which they occur.  

Notice that Equation (1) implies that Mt /Mt-1 = Πt (ct,o/ct-1,o) . Hence, by Equation (13), 

inflation in period t is given by 
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Equation (14) shows that positive money supply innovations raise inflation, whereas positive 

productivity innovations lower inflation because they raise the marginal productivity of 

capital and hence push up retirement consumption. It is also clear from this equation that the 

money supply is a source of long run inflation risk.  

                                                           
13

 The second equality in Equation (12) follows from repeated substitution for the past money supply N times. 

14
 It is assumed for analytical convenience that money supply innovations are IID. If money supply innovations 

are positively correlated then the inflation risk premium is larger. 
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2.4 Market-clearing and equilibrium  

Since capital depreciates fully in one period, investment in period t is it = kt+1. 

Definition of equilibrium:
15
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3 The inflation risk premium: analytical results 

Taking a second-order approximation of Equations (6) and (7) gives the following 

relationship between nominal and real interest rates:
16
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where ‘hats’ denote log deviations from the deterministic steady-state
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The inflation risk premium is the final term in Equation (15), i.e. the covariance between the 

stochastic discount factor and inflation. It tells us that if inflation is high when the marginal 

utility of retirement consumption is high, then nominal debt will pay a higher equilibrium 

nominal interest rate to consumers to compensate for the fact that their real payoff will tend 

                                                           
15

 Notice that d and s superscripts have been introduced in this section to denote demand and supply values.  

16
 See Appendix B for a derivation. Interestingly, Equation (15) shows that the relationship between real and 

nominal interest rates is non-standard: there is an additional covariance term involving consumption and 

inflation, and the coefficient on the inflation convexity term is no longer -1/2. The usual expression is recovered 

when δ = 0. Mathematically, the standard expression is: ]ˆ,ˆ[cov]ˆ[var)2/1(]ˆ[ˆˆ
1.111   ttttttttt fdsErR . 
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to be low at times when extra consumption is highly valued. Since this covariance term is 

conditional on period-t information, it is only the component of marginal utility that is 

correlated with unanticipated inflation that matters for the inflation risk premium.
17

  

The aim is to derive a second-order accurate closed-form solution for the inflation risk 

premium. As noted by Devereux and Sutherland (2011), this requires first-order accurate 

expressions for the stochastic discount factor and inflation. Log-linearizing the stochastic 

discount factor and Equation (14), we have: 
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Inserting these results into the inflation risk premium term in Equation (15) gives 
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We therefore require an expression for old age consumption. Firstly, note that the money 

transfer and the cash-in-advance constraint, Equation (1), allow us to write Equation (3) as: 
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where 
11, /  ttit bbv  is the share of total government debt, 

1,1,1   tntit bbb , that is indexed. 

Log-linearizing the last equality in Equation (17) and using the deterministic steady-state as 

the approximation point for all variables except the indexation share vt, and noting that 

rn,t+1
 
= Rt /Пt+1 and r = rn at the deterministic steady-state:
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where θb ≡ rb/co, θk ≡ 1 – δ – θb,  and 0 ≤ v ≤ 1 is the approximation point around which the 

indexation share is log-linearised. 

                                                           
17

 Consequently, ρA and the anticipated part of inflation, ct,o ,will not matter for the inflation risk premium. 

Notice that the inflation risk premium is the only genuine risk premium in Equation (15) because the other 

covariance term is non-zero even if households are risk-neutral (i.e. when γ = 0). 

18
 The indexation share is not approximated around the deterministic steady-state because the latter does not 

depend on v. Note that because the time-varying component of the indexation share does not affect the first-

order behaviour of old-age consumption, see Eq(18), a constant portfolio share vt = v will support an 

equilibrium. This is a general result for second-order solutions established by Devereux and Sutherland (2011).  



9 

 

Now, substituting for inflation in Equation (18) and collecting terms, we have an expression 

for old-age consumption in terms of exogenous and predetermined variables: 
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where 1,1
ˆˆ

  tAtAt eAA   by Equation (10). 

Finally, substituting Equation (19) into Equation (16) and noting that money innovations are 

uncorrelated gives us a second-order-accurate expression for the inflation risk premium:       
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Since each period in the model lasts N years, the annualised inflation risk premium can be 

calculated by dividing the above equation by N.
19

 It should be noted that the parameter N 

enters Equation (20) directly because base-level drift in the money supply is a source of long 

run inflation risk, as is clear from Equation (14).  

Equation (20) shows that the inflation risk premium increases with the coefficient of relative 

risk aversion, productivity risk, and money supply volatility. In addition, it depends on the 

steady-state share of retirement consumption that is funded by nominal bonds, θb; the 

indexation share, v; 
20

 and the steady-state share of capital income in retirement consumption, 

θk = 1 – θb – δ. Productivity risk and money supply volatility enter the inflation risk premium 

because both productivity and money supply innovations will tend to lower retirement 

consumption (and hence raise marginal utility) at times when inflation is unexpectedly high.  

A positive money supply innovation raises inflation through two channels. First, there is a 

direct effect on inflation through a rise money supply growth, plus an indirect effect due to 

the fact that a positive money supply innovation lowers retirement consumption (see 

Equation (19)), which in turn raises inflation further by Equation (14). Because unanticipated 

inflation reduces the real value of nominal debt, it lowers retirement consumption and raises 

marginal utility. As a result, monetary volatility raises the inflation risk premium.  

Now consider the impact of productivity innovations. If there is an unexpectedly low 

innovation to productivity, then the marginal product of capital will fall, pushing down 

retirement consumption. At the same time, inflation will rise by Equation (14). Since 

productivity innovations will tend to raise marginal utility at times when inflation is high, 

productivity risk also makes a positive contribution to the inflation risk premium.   

                                                           
19

 Formally, division by N follows from the assumption that annual yield = (N-year yield)
1/N

. This conversion is 

common in overlapping generations models – see e.g. Constantinides and Mehra (2002, p. 285). 

20
 Hatcher (2014) has shown numerically that the inflation risk premium in an overlapping generations model 

depends on the indexation share.  
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It is clear from Equation (20) that the inflation risk premium depends crucially on the steady-

state shares of retirement consumption funded by nominal bonds, (1 – v)θb, and capital,  θk = 

1 – θb – δ. The bond share θb has an ambiguous impact on the inflation risk premium because 

raising the portfolio share of bonds makes the old more vulnerable to unexpectedly high 

money supply innovations that lower the real value of nominal government debt, but it also 

implies a simultaneous fall in the portfolio share of capital, which reduces exposure to 

productivity innovations. It is also clear from Equation (20) that the cash-in-advance 

parameter δ matters for the inflation risk premium. This point is considered in Section 5.4.   

4 The inflation risk premium: numerical results from a calibrated model 

In this section, a numerical example is considered. In particular, the model is calibrated and 

the inflation risk premium is compared with existing theoretical and empirical studies. The 

results reported in this section are based on a second-order approximation of the model 

around the log steady-state, as computed using Dynare (see Adjemian et al., 2011).
21

  

4.1 Bond supply rule 

To emphasise the generality of the analytical results in Section 3, the dynamics of 

government debt have thus far been left unspecified. This was possible because Equation (20) 

shows that, in a second-order approximation, the inflation risk premium is affected by the 

steady-state share of bond income in retirement consumption, θb, but not by the dynamics of 

the bond supply. Since the aim in this section is to compute a meaningful model ‘estimate’ 

for the inflation risk premium, a bond supply rule is chosen that implies a plausible steady-

state share of bond income in retirement consumption and plausible ratios of key variables.  

In particular, the bond supply rule follows that in Hatcher (2014): 

     ][ 1tt sdfE                    (21) 

This rule implies perfect consumption smoothing at the deterministic steady-state. The 

deterministic steady-state of the model under this rule is reported in Appendix C.  

4.2 Calibration 

The model is roughly calibrated to the US economy. In particular, the parameters of the 

model are chosen to roughly match key ratios in the data. Expressions for these key ratios at 

the deterministic steady-state are reported in Appendix C. Since these ratios depend upon 

several different parameters, the calibration uses parameter values which are plausible and 

give good performance against target ratios.
22

 The calibration is listed in Table 1. 

                                                           
21

 The results reported by Dynare in this section match the predictions of Equation (20) exactly.  

22
 In some models, key ratios are pinned down by a single parameter so that calibrated values can be set to 

replicate target ratios exactly. The model here does not have this property. 



11 

 

Table 1 – Baseline calibrated values 

  α                 Capital share              0.22        θg     Government spending-GDP ratio            0.16                    

  β         Private discount factor       2/3          Φ
 
      Annual steady-state money growth        1.02                  

  γ                 Risk aversion              5             ρA            Productivity persistence                   0.50                          

  N      Number of years per period  30           σA                Std(TFP innov.)                           0.07                       

  δ       Cash-in-advance parameter  0.05         σ               Std (money innov.)                        0.02                       

  v           Share of indexed debt       0.10 

The number of years per period N is set equal to 30, implying that the bonds have a maturity 

of 30 years. Steady-state annual money growth Φ is set at 1.02, consistent with steady-state 

inflation of 2%. The parameter θg is set at 0.16 to match a government spending-GDP share 

of 16%.
23

 The production function parameter α is set at 0.22, implying that capital income is 

22% of GDP. This value is on the low side of standard calibrations, but this helps the model 

to match the target ratios of long-term debt and investment to GDP (see Table 2 and 

Appendix C). The cash-in-advance parameter δ is set at 0.05, which implies that 5% of 

retirement consumption is funded by money. This calibration implies that cash holdings are 

2% of GDP, which is fairly similar to the currency component of M1 in US data.
24

   

Since real returns are equalised in the absence of uncertainty, the share of indexed debt v does 

not affect the deterministic steady-state (see Appendix C). It is therefore set at 0.1 to match 

the 2008 share of outstanding marketable debt in Treasury Inflation-Protected Securities (see 

Campbell et al., 2009).
25

 The discount factor β is set at 2/3, which implies an annual discount 

factor of 0.987 and a steady-state real interest rate of around 1.5% per annum. Since inflation 

is 2% per year in the steady-state, the nominal rate is 3.5% per annum. The coefficient of 

relative risk aversion γ is set at 5. This value is on the high side of standard calibrations to 

give the model a chance of matching empirical estimates of the inflation risk premium.  

The productivity innovation standard deviation σA is set at 0.07 and productivity persistence 

ρA at 0.5. Both of these calibrated values are similar to those in Hatcher (2014), who 

considers a model with a generational horizon of 20 years.
26

 Finally, the standard deviation of 

money supply innovations is set at 0.02, which lies slightly below the standard deviation of 

annual M2 growth from 1992 to 2007 based on FRED data. 

4.3 Results and discussion 

The calibrated model does fairly well against target ratios (see Table 2). The US investment-

GDP ratio has been close to 15% over the period 1992 to 2012 and over the same period the 

consumption share averaged 69% (see Table 1, 2013 Economic Report of the President), 

implying target ratios of 0.15 and 0.69.
 
The model gives ratios of 0.14 and 0.70. The US 

government debt to GDP share averaged around 70 per cent over the same period and, based 

                                                           
23

 The average government spending share over the period 1992 to 2012 was approximately 16%. See Economic 

Report of the President 2013, Table 1.  

24
 See the data available from the FRED database run by the Federal Reserve Bank of St Louis. 

25
 Note that the indexation share can be treated as a calibrated parameter because (i) the returns R and r are 

endogenous, and (ii) we established (see Equation (18) and Footnote 18) that, in general, a constant indexation 

share supports an equilibrium up to a second-order approximation of the model.  

26
 The higher value of σA here (0.070 vs 0.055) is chosen to reflect the longer generational horizon of 30 years. 
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on OECD data, bonds with maturities exceeding 20 years but less than or equal to 30 years 

accounted for one-tenth of all bonds outstanding in 2002.
27

 Multiplying these two figures 

together implies a target share of long-term debt to GDP of 7%. On this score, the model 

gives a ratio of 0.07. Finally, the model implies that income from nominal bonds accounts for 

29% of retirement consumption at the deterministic steady-state. This figure is fairly similar 

to the net nominal positions of US households aged 66-75 and over 75 as a fraction of 

average net worth: 19.4% and 30.4% respectively in 1989 (see Doepke and Schneider, 2006). 

The inflation risk premium in the calibrated model is non-trivial at 20 basis points per annum. 

In fact, this figure is comparable to some recent empirical estimates from estimated no-

arbitrage affine models of the term structure. For instance, in relation to the Euro Area, 

Garcia and Werner (2010) estimate an inflation risk premium at a 5-year maturity of around 

25 basis points, while Hördahl and Tristani (2012) report an average risk premium at the 10-

year maturity of just over 20 basis points. Most empirical estimates from affine models of the 

term structure tend to be somewhat higher than these figures, however.  

Table 2 – Inflation risk premium and target versus model ratios 

                      

        Note: the value of g/y is given by 1 – (cy +co)/y – i/y. The IRP is in basis points per annum.  

In the US, several recent studies have estimated no-arbitrage affine models of the term 

structure using nominal yields and inflation data, along with additional information from 

index-linked yields, inflation surveys or inflation swaps. These studies point to a positive 

average inflation risk premium of between 50 and 120 basis points. For instance, D’Amico et 

al. (2009) found an inflation risk premium on 10-year bonds of 64 basis points on average, 

while Ang et al. (2008) report a higher average risk premium of around 110 basis points at a 

10-year maturity. Even higher estimates at a 10-year maturity have been reported by Chernov 

and Mueller (2012). Estimates of inflation risk-premia on long-term US bonds have been 

provided by Haubrich et al. (2008). Their results suggest that inflation risk premia increase 

with maturity: 10-year bonds have a risk premium of 51 basis points, compared to 81 basis 

points on 20-year bonds, and 101 basis points on 30-year bonds. To the author’s knowledge, 

this is the only study estimating long-term inflation risk premia. While this study concludes 

that long-term inflation risk premia are somewhat higher than in the calibrated model, the 

model’s prediction is of the same order of magnitude.  

                                                           
27

 The data on the government debt-GDP share was obtained from the FRED database. 

                     Target                  Definition                     Deterministic        Stochastic             

   yb /              0.07             Long-term bonds/GDP                0.07                     0.07            

   yi /               0.14                 Investment/GDP                      0.14                     0.14           

    /)( ycc oy    0.69               Consumption/GDP                    0.70                     0.70           

  
bv )1(           0.25          

nconsumptio  Retirement

income bond Nominal
            0.29                     0.29  

    IRP              –              Inflation risk premium (p.a.)            0                        20.01 
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There are fewer empirical estimates of inflation risk premia for the UK, but there have been 

some notable recent attempts. Joyce et al. (2010) estimated a no-arbitrage affine model of the 

term structure and concluded that the inflation risk premium on 5-year bonds has averaged 

around 100 basis points. More recently, Andreasen (2012) estimated a New Keynesian model 

of the UK economy and found an average inflation risk premium of around 50 basis points on 

5-year bonds and 70 basis points on 10-year bonds. The results in Reschreiter (2004) likewise 

suggest that the UK inflation risk premium is non-trivial at these (and longer) maturities.   

Turning to the theoretical literature, general equilibrium models have had a difficult time 

explaining the magnitude of inflation risk premia, just as with other asset risk premia.
28

 For 

instance, Ravenna and Seppälä (2007) simulated a New Keynesian model of the term 

structure and found that inflation risk premia were robustly small and negative at bond 

maturities up to five years. De Paoli et al.  (2010) showed that the sign of the inflation risk 

premium depends crucially on shock composition: it is positive in a New Keynesian world 

dominated by productivity shocks but negative when monetary policy shocks are dominant. 

The positive inflation risk premium in their model amounts to 9 basis points on a 1-quarter 

bond. In a similar New Keynesian model, Hördahl et al. (2008) find very small positive 

inflation risk premia of less than 1 basis point at maturities from 1 to 10 years. Lastly, as 

noted above, Andreasen (2012) estimated a New Keynesian model of the term structure on 

UK data and found an average inflation risk premium on 5-year bonds of around 50 basis 

points. However, this figure relies crucially on high estimated risk aversion through Epstein-

Zin preferences. Consequently, the model would not have been able to generate high risk 

premia if plausible levels of risk aversion had been imposed on the model in estimation (e.g. 

by placing bounds on the estimated preference parameters related to risk aversion).      

In summary, the empirical literature points to robustly positive inflation risk premia in major 

developed economies, with large premia in the US and the UK. There are few studies 

investigating long-term premia, but the available evidence points to an inflation risk premium 

of around 80 basis points on 20-year bonds and 100 basis points on 30-year bonds. Although 

the risk premium of 20 basis points in the calibrated model is somewhat lower than these 

figures, it is of the same order of magnitude as most empirical estimates in the literature.           

5 Robustness 

The analysis of the previous section shows that the inflation risk premium is non-trivial in a 

calibrated model. This section discusses the role of the cash-in-advance constraint in this 

result and investigates the sensitivity of the risk premium to key calibrated parameters. 

5.1 Importance of the cash-in-advance constraint  

There are two ways to assess the importance of the cash-in-advance constraint for the 

inflation risk premium. First, changing the cash-in-advance parameter δ changes the fraction 

of old-age consumption that must be purchased using money and alters the composition of 

retirement portfolios. Second, we can ask how the inflation risk premium from the calibrated 

model compares with that in a model with no cash-in-advance motive. 

 

                                                           
28

 The difficulties that theoretical models face in matching risk-premia are well-known and apply to both bonds 

(e.g. Backus et al., 1989; Rudebsuch and Swanson, 2008) and equity (e.g. Mehra and Prescott, 1985). 
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5.1.1 Cash-in-advance parameter 

As is clear from Equation (20), the cash-in-advance parameter δ enters the inflation risk 

premium directly, with this direct effect being ambiguous. It will also enter this expression 

indirectly through the coefficient θb = rb/co (the steady-state share of bond income in 

retirement consumption). In the case of the calibrated model, it can be shown using the 

expressions in Appendix C that a rise in δ will tend to reduce θb under standard parameter 

values. Since δ has an ambiguous impact on the inflation risk premium, we resort to 

numerical analysis by simulating the inflation risk premium under alternative values of δ. 

 
Fig 1 – Sensitivity of the inflation risk premium to the cash-in-advance parameter, δ. 

Note:  The inflation risk premium is in basis points per annum. The baseline case is δ = 0.05. 

Figure 1 shows that the inflation risk premium is relatively insensitive to δ. For instance, 

doubling the value of δ from the baseline value of 0.05 to 0.10 lowers the inflation risk 

premium to 18 basis points, whereas reducing it to 0.01 raises the inflation risk premium to 

21 basis points. Although Figure 1 seems to suggest that setting δ = 0 would raise the 

inflation risk premium, this is not case because money (and hence inflation) is absent. Using 

such a benchmark is clearly not sensible because it implies zero inflation risk premium by 

definition. Instead, it is more appropriate to compare against a case where money is valued 

but the cash-in-advance motive is absent. We now turn to a comparison of this kind.        

5.1.2 Absence of the cash-in-advance motive 

Champ and Freeman (1990) consider an overlapping generations model in which money is 

introduced by a legal requirement to hold real money balances of at least μ > 0, so that mt = μ 

for all t when the constraint is binding. As a result, money has value in equilibrium, but the 

cash-in-advance motive is absent. To assess the implications of this, an analytical expression 

the inflation risk premium was derived under this alternative assumption (see Supplementary 

Appendix). The inflation risk premium is now given by 

 2)1( Mb NvIRP                      (22) 

where, as previously, θb ≡ rb/co is the steady-state share of bond income .  

If this alternative model is calibrated with the same values of  , v, N, and σM  as the baseline 

model and the production function parameter α is chosen to give the same bond share θb, then 

the predicted inflation risk premium is much lower at only 5.4 basis points per annum. This 

finding shows that the cash-in-advance motive is crucial in producing a sizeable risk 

premium. In particular, it raises the inflation risk premium by almost 15 basis points per 
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annum and more than trebles its value. It is also notable that productivity risk does not matter 

for the inflation risk premium in the absence of the cash-in-advance motive.           

The cash-in-advance constraint is important for the inflation risk premium for two reasons. 

First, it implies that inflation is positively related to money supply growth but inversely 

related to retirement consumption; see Equation (14). Consequently, the positive correlation 

between stochastic discount factor and inflation is stronger than in the absence of the cash-in-

advance motive. Second, because inflation depends on monetary growth and retirement 

consumption, inflation risk depends on both productivity risk and monetary volatility. By 

contrast, all inflation risk comes from monetary volatility in the absence of a cash-in-advance 

motive (see the Supplementary Appendix). As a result, inflation risk is higher for any given 

level of volatility in the cash-in-advance model. 

5.2 Parameter sensitivity analysis 

This section considers robustness to several key calibrated parameters, namely, the 

coefficient of relative risk aversion γ, the indexation share v, monetary risk σM and 

productivity risk σA. As shown in Appendix C, these parameters do not affect the model’s 

deterministic steady-state. Consequently, they can be varied to test robustness while 

maintaining the deterministic steady-state listed in Table 1. The results are shown in Figure 2.  

  
Fig 2 – Sensitivity of the inflation risk premium to key parameters.  

Note: the inflation risk premium is in basis points per annum.  

With the exception of productivity risk, the inflation risk premium is quite sensitive to these 

parameters. Under high risk aversion of 7 the inflation risk premium rises to almost 30 basis 

points, while under a standard parameterization such as 3 it falls to around 12 basis points. 

Consistent with Equation (20), the inflation risk premium falls at a linear rate as the 

indexation share v is increased. It falls from 24 to 17 basis points as the indexation share is 

increased from 0 to 0.20, which appears to be the most relevant range for major developed 

economies.
29

 For monetary volatility, there is also considerable sensitivity: raising the 
                                                           
29

 For instance, in Canada in 2008, indexed bonds were around 6% of marketable government debt (Department 

of Finance Canada, 2008). Similarly, Campbell et al. (2009) report that, in 2008, indexed government bonds 

were 10% of marketable government debt in the US. In the UK, which has the highest indexation share amongst 

developed economies, the indexation share has been between 20% and 30% over the past decade.          
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monetary innovation standard deviation to 0.025 raises the inflation risk premium to almost 

30 basis points, while lowering it to 0.015 gives an inflation risk premium of around 15 basis 

points. By contrast, raising the standard deviation of productivity innovations from 0.055 to 

0.085 raises the inflation risk premium only modestly, from 17 to 23.5 basis points. All in all, 

the conclusion that the model produces a non-trivial inflation risk premium is fairly robust, 

with the inflation risk premium not falling below 12 basis points.   

 

6 Conclusion 

This paper has investigated the inflation risk premium on long-term government debt in an 

overlapping generations model. In order to capture long run inflation risk, money supply 

shocks hit the economy at a yearly horizon and lead to base-level drift. The paper makes two 

main contributions. First, using the methods developed by Lombardo and Sutherland (2007) 

and Devereux and Sutherland (2011), a second-order accurate closed-form analytical 

expression for the inflation risk premium was derived. This expression shows that the risk 

premium depends crucially on the importance of nominal bonds and capital as sources of 

retirement consumption. This finding is appealing because the data suggests that an important 

reason old households are hit by unanticipated inflation is their substantial holdings of 

nominal government debt (Doepke and Schneider, 2006; Meh and Terajima, 2011).  

The second contribution was to show that the inflation risk premium predicted by the model 

is non-trivial under plausible calibrations of risk aversion. In particular, when the model was 

roughly calibrated to US data it gave an inflation risk premium of around 20 basis points. 

This number is of the same order of magnitude as most empirical estimates and fairly robust 

in sensitivity analysis. In the model presented, money was introduced by a cash-in-advance 

constraint on old-age consumption. This assumption is crucial because it raises inflation risk 

and strengthens the correlation between inflation and the stochastic discount factor. In fact, 

the inflation risk premium is lowered to only 5 basis points in the same model if the cash-in-

advance motive is absent.  
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Appendix A – Derivation of first-order conditions 

This Appendix derives the first-order conditions for households reported in the main text. 

To start with, note that the budget constraints, Equations (2) and (3), can be written as 

follows where the lump-sum monetary transfer to the old is taken as given by the old: 

ttttyt mxTwc  1,                           (A1) 

1,1,11,,1   trealttmttxot TRmrxrc                                       (A2) 

where 1,1,11   tntitt bbkx and ttitntntktktx rrrr ,1,,1,,1,     with shares 

11, /  tttk xk , 11,, /  ttntn xb  and tntkti ,,, 1   . 

Rearranging for xt+1 in (A2) and substituting the result into (A1) gives us the lifetime budget 

constraint faced by the young born in period t: 
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where the fact that 11, /1   ttmr  has been used. 

Due to the cash-in-advance constraint, mt+1 = δct+1,o, the last term in (A3) will be a function of 

consumption in old age. In particular, given that Πt+1 ≡ Pt+1/ Pt  and Mt+1 = θt+1Mt: 
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Substituting for (A4) in (A3) and collecting terms gives 
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The maximization problem of the young born in period t can therefore be stated as follows: 
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The first-order condition for this problem is as follows: 
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where  

  )/( ,,11 ytott ccsdf . 

The Euler equations for individual asset holdings (see Section 2.1) can be obtained from (A7) 

by setting },,{for   1, inkjtj   in the definition of rx,t+1. 

Appendix B – The relationship between real and nominal interest rates 

In this Appendix, the second-order accurate approximation method in Lombardo and 

Sutherland (2007) is used to derive the relationship between real and nominal rates. This 

method is applied to portfolio problems by Devereux and Sutherland (2011), amongst others. 

For convenience, the first-order conditions for bond holdings are repeated here: 

]~[1 1,1  tntt rsdfE    for nominal bonds, bn                                                (B1) 

]~[1 1,1  titt rsdfE                     for indexed bonds, bi                          (B2) 

 

where  

  )/( ,,11 ytott ccsdf , -1

111,1,1,  ]/)1(1[~
  tttntntn rrr  , 11, /   tttn Rr  and 

1

111, ]/)1(1[~ 

  ttttti rrr  . 

We start by taking a second-order approximation of (B1) and (B2): 

  ]2[]~̂ˆ~̂)2/1(~̂ˆ)2/1(ˆ[0 1,1

2

1,1,

2

11 OrfdsrrfdsfdsE tnttntnttt                             (B3) 

 ]2[]~̂ˆ~̂)2/1(~̂ˆ)2/1(ˆ[0 1,1

2

1,1,

2

11 OrfdsrrfdsfdsE tittitittt                (B4) 

where ‘hats’ denote log deviations from the deterministic steady-state and O[2] includes all 

terms of higher order than 2. 

Subtracting (B4) from (B3) and ignoring higher-order terms, we get: 

    )]~̂~̂(ˆ)~̂~̂)(2/1(~̂~̂[0 1,1,1

2

1,

2

1,1,1,   titnttitntitnt rrfdsrrrrE                                    (B5) 

 As noted by Hördahl et al. (2008) and Devereux and Sutherland (2011), second-order 

accurate expressions for asset prices can be obtained from first-order accurate solutions. In 

particular, terms involving products can be computed using their log-linear counterparts.
30

  

To this end, note that the returns that enter Equations (B1) and (B2) can be approximated to 

first-order around the deterministic steady-state as follows: 

                                                           
30

 See Proposition 2 in Devereux and Sutherland (2011). 
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Noting that otottt cc ,,111
ˆˆˆˆ    and 11,

ˆˆˆ
  tttn Rr , we can simplify these equations to  

 )ˆˆ(ˆ)(ˆ~̂
,,1312111, otottttn ccRr                    (B8) 
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Due to certainty equivalence, the log-linearized returns in (B8) and (B9) must satisfy: 

 ]~̂[]~̂[ 1,1,   tittnt rErE ,                (B10) 

This observation simplifies somewhat the derivations which follow. First, taking expectations 

in (B5) and using (B10) in terms that involve products gives a second-order accurate 

expression for the expected difference in real returns involving second moments only:
31
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Using (B8) and (B9) to compute the terms on the RHS of (B11), we have: 
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 The second equality uses 2

11

2

1 ])[(][var][   tttttt zEzzE  and ][][],[cov][ 111111   tttttttttt sEzEszszE  

along with equalization of expected real returns as per (B10). 
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Substituting these expressions into the second line of (B11) implies that 

       ]ˆ,ˆ[cov]  ]ˆ,ˆ[cov2]ˆ[var)2( [
2

1
]~̂~̂[ 1111,131121

2

11,1,   ttttotttttitnt fdscrrE        (B16) 

Finally, by (B8) and (B9), the left hand side of (B16) is equal to 

 ]ˆ[)ˆˆ(]~̂~̂[ 1111,1,   tttttitnt ErRrrE                                                      (B17) 

Substituting (B17) into (B16) and dividing by ϕ1 gives us the equation reported in Section 3: 

 ]ˆ,ˆ[cov]ˆ,ˆ[cov]ˆ[var)2)(2/1(]ˆ[ˆˆ
1.11,.131211   ttttotttttttt fdscErR      (B18) 

 

 

Appendix C – Deterministic steady state of the calibrated model and key ratios 

 

Deterministic steady-state 
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Deterministic steady-state ratios 
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Supplementary Appendix (for online publication only) 

The inflation risk premium in the absence of a cash-in-advance constraint 

In this Appendix the inflation risk premium is derived in the case where, following Champ 

and Freeman (1990), young agents are required to hold real money balances of at least μ > 0, 

so that mt ≥ μ. As in that paper, this constraint is assumed to bind, so that mt = μ for all t. All 

other aspects of the model are unchanged. This change in assumption affects household first-

order conditions and the equations for inflation and consumption by the old. The first-order 

conditions are derived and the implications for inflation and consumption by the old are 

discussed. Finally, we turn to the inflation risk premium. 

First-order conditions  

We start by noting that the budget constraints can be written as follows where the lump-sum 

monetary transfer to the old is taken as given: 

ttttyt mxTwc  1,                         (SA1) 

1,1,11,,1   trealttmttxot TRmrxrc                                     (SA2) 

where 1,1,11   tntitt bbkx and ttitntntktktx rrrr ,1,,1,,1,     with 

11, /  tttk xk , 11,, /  ttntn xb  and tntkti ,,, 1   . 

Rearranging for xt+1 in (SA2) and substituting the result into (SA1) gives us the lifetime 

budget constraint of the young born in period t: 
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where 11, /1   ttmr  and mt = μ have been used. 
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Hence, the maximization problem of the young born in period t is as follows: 
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The first-order condition for this problem is: 

 ][1 1,1  txtt rsdfE                                                  (SA5) 

The Euler equations for individual asset holdings can be obtained from (SA5) by 

setting },,{for   1, inkjtj   in the definition of rx,t+1: 

 ][1 1,1  tktt rsdfE    for capital, k                                   (SA6) 

][1 1,1  tntt rsdfE    for nominal bonds, bn                                             (SA7) 

 ][1 1 ttt sdfEr                         for indexed bonds, bi                                  (SA8) 

These are the standard Euler equations in the absence of a cash-in-advance constraint. 

Equilibrium inflation and consumption by the old 

The reserve requirement mt = μ implies that Mt/Pt = μ, where Mt  is the nominal money stock 

and Pt  is the aggregate price level. Consequently, inflation is equal to the money supply 

growth rate (see Equation (13) of the main text): 
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Turning to consumption by the old, note that since the monetary transfer is equal in real terms 

to mt+1 – rm,t+1mt and mt = μ, we can write Equation (3) of the main text as follows: 
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where 11, /  ttit bbv  is the share of government debt, 1,1,1   tntit bbb , that is indexed. 

The inflation risk premium 

Since rn,t+1 = Rt /Πt+1, taking a second-order approximation of (SA7) and (SA8) leads to 
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                                           (SA12) 

The inflation risk premium is the covariance term. We can derive an analytical expression for 

this term as follows. First, denoting the inflation risk premium IRP, we have   

 ]ˆ,ˆ[cov]ˆ,ˆ[cov 1,111   tOttttt cfdsIRP                                                      (SA13) 

Second, log-linearizing (SA10) and noting that r = rn at the deterministic steady-state:
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where ob crb / and obok cck /1/    . 

Finally, substituting (SA14) into (SA13) and using (SA9) we find that  
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           (SA15) 

 This expression matches the one reported in Equation (22) of the main text. 
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 As in the main text, the indexation share is approximated around vt = v, where 0 ≤ v ≤ 1; see Equation (18) and 

Footnote 18. The resulting indexation share is constant at vt = v as per the discussion in the main text. 


