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Abstract

This paper extends the standard neoclassical model by considering a technology sector

through which an economy with limited human capital attempts to catch up with a given

“locomotive” pushing exogenously technical progress. In periods of technological stagna-

tion, economies close enough to the frontier may find it optimal to not catch up, which

reinforces worldwide technological sclerosis. Under sustainable technological growth, all

the other economies will sooner or later engage in imitation. Such a phase of technology

adoption may be delayed depending on certain deep characteristics of the followers.

1 Introduction

The neoclassical theory of economic growth (Solow, 1957) entails the idea of an economic loco-

motive driving worldwide technological progress through the assumption of exogenous tech-

nological progress. Related concepts like convergence and catching-up have been developed

along the way (see one of the numerous textbooks in economic growth, like Barro and Sala-

i-Martin, 1995). However, in this benchmark, convergence refers to the level of income per

capita being equalized in the long-run under certain assumptions, and in particular assuming

that all countries have immediate access to the same technology at no cost. It is now widely
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admitted that such an assumption is heroic, under-development principally originates in the

difficulty of transferring top technologies to countries with very limited technological absorp-

tion capacity due to the scarcity of human capital. This note revisits the neoclassical growth

model by introducing a technology adoption variable into the benchmark and bringing the

limited human capital resources into the analysis. To unburden the analysis, we shall assume

that human capital resources are fixed for ever. These resources should be allocated between

technology adoption (or imitation of a given economic growth locomotive in the neighborhood

of the economy) and production of the final good. Technological evolution follows a catching-

up equation pretty much in line with Nelson and Phelps (1966), as recently resumed by Ben-

habib and Spiegel (1994) and Boucekkine et al. (2006). The paper derives optimal adoption

policies and their implications for the long-term technological gap between the locomotive and

the follower depending on the strength of the locomotive’s economic growth. We show how

the latter aspect dramatically shape the outcomes of the model (nonzero or zero long-run tech-

nological gap, adoption delays, etc...). In periods with no significant technological progress

(i.e, pre-industrial periods), economies close enough to the technological frontier may find it

optimal to not catch up with the locomotive, which reinforces worldwide technological sclero-

sis. When the locomotive economy experiences sustainable technological growth, then all the

other economies will sooner or later engage in imitation. Such a phase of technology adoption

may be delayed depending on certain deep characteristics of the followers. Our model delivers

therefore a simple non-strategic theory of adoption delays.

2 The model

Suppose that the economy is populated by infinitely lived agents with a strictly increasing and

concave consumption-based utility function U(C(t)). For simplicity, we normalize population

size to 1. We also model normalize total human capital available in this economy to 1 to reflect

scarcity as outlined above. A benevolent planner aims at maximizing the welfare of the econ-

omy by choosing the optimal human capital allocation across the final good and the technology

sectors, and the optimal consumption plan over time:

max
u(t),l(t),C(t)

∫ ∞

0
e−ρtU(C(t))dt, (1)
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with ρ time preference, subject to:

Y (t) = A(t)K(t)αl(t)1−α, (2)

Ȧ = φ(t)u(t)
(
A0(t)−A(t)

)
, (3)

K̇ = I(t)− δK(t) = Y (t)− C(t)− δK(t), (4)

and the resource constraint

u(t) + l(t) = 1, 0 ≤ u(t), 0 ≤ l(t). (5)

Equation (2) gives the production function which is the usual neoclassical one: K(t) is the

stock of capital at t, l(t) is production human capital, and α is capital share. A(t) is the level of

technology, and in contrast to the standard neoclassical model, we assume that it follows the

dynamic law of motion (3), which features a kind of output of a technology sector. The econ-

omy imitates the technology of the regional locomotive, here A0(t), u(t) is human capital in the

technology sector, and φ(t)(< 1) is an exogenous variable indexing the learning (or absorbing

capacity) of this economy. Just like in standard endogenous growth theory (see Romer, 1990),

we assume constant return to human capital in the technology sector. We also assume that A0(t)

grows at constant exogenous rate γ ≥ 0: A0(t) = A0eγt, ∀t ≥ 0. Initially, K(0) and A(0) < A0(0)

are given: the technology of our economy is lagged with respect to the locomotive.

The optimal control problem above (with control) constraints is standard, and can be handled

using the Lagrangean:

L = U(C(t)) + µ1(t)
(
A(t)Kαl1−α − C − δK

)
+ µ2(t)φ(t) u

(
A0(t)−A(t)

)

+ξ(t)u(t) + η(t)l(t) + w(t)(1− u(t)− l(t)),

where µ1(t) and µ2(t) are the costate variables associated with capital and technology stocks

respectively, w(t) is the Lagrange multiplier associated with human capital resource constraint

(therefore representing the shadow wage or shadow remuneration of human capital), and ξ and

η(t) are the Kuhn-Tucker multipliers for nonnegative constraints on the allocation of human

capital across the two sectors. The first-order necessary (and sufficient) conditions are:

µ1(t) = U ′(C), (6)
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µ̇1(t) = ρµ1 − µ1(αAKα−1l1−α − δ), (7)

µ̇2(t) = ρµ2 −
[
µ1K

αl1−α − µ2(t)φ(t)u
]
, (8)

∂L
∂u

= µ2(t)φ(t)
(
A0(t)−A(t)

)
+ ξ(t)− w(t) ≤ 0, ξt ≥ 0, ξtut = 0, (9)

with equality if ut > 0,

∂L
∂l

= µ1(t)(1− α)A(t)Kαl−α + η(t)− w(t) ≤ 0, ηt ≥ 0, ηtlt = 0, (10)

with equality if lt > 0, and the transversality conditions lim
t→∞ e−ρtµ1K(t) = 0, and lim

t→∞ e−ρtµ2A(t) =

0. The conditions are standard. In particular, (9) and (10) are the optimality conditions with

respect human capital shares in the technology and final good sectors respectively. The both

account for scarcity of human capital and for the non-negativity constraints (in the standard

way). Notice that by (10) the corner solution l(t) = 0 is impossible (since α < 1). However,

both the corner and interior solutions are possible for u(t) resulting in different technological

development paths, as explained below. From now on, we assume a logarithmic utility func-

tion and φ(t) = φ > 0 for simplicity.

3 Main results

Define the balanced growth paths (BGP) as particular solutions to the optimality conditions

and feasibility constraints listed in Section 2 such that human capital allocation across sectors

is time-independent and variables K(t), C(t) and A(t) grow at non-negative rates. We denote

the growth rate of variable X as gX . We are able to gather the following two main results.

3.1 Catching-up in periods of technological stagnation

This pre-industrial case corresponds to γ = 0 in our model. This case is characterized by the

following proposition.

Proposition 1 Suppose γ = 0 and A0(t) = A0(0).

(i) u(t) = 0, for all t ≥ 0, is an optimal choice if

A0(0)
A(0)

≤ 1 +
ρ(1− α)

φ
. (11)

4



(ii) Otherwise, if A0(0)
A(0) > 1+ ρ(1−α)

φ , there exists t > 0, such that, catching up in technology happens

at t where A(t) = A0(0), ∀t ≥ t and u(t) =





> 0, ∀ 0 < t < t,

= 0, ∀ t ≥ t.

Condition (11) puts an upper bound on the initial technological gap: if it is low enough, that

is if the technological frontier is close enough, then the economy may not devote any effort to

technological catching-up: the productivity gain in doing so does not compensate for the loss

in consumption (and therefore in welfare) coming from diverting human capital from the final

good sector to the technology sector. Notice that the upper bound in (11) is increasing in the

discount rate, ρ, and decreasing in the learning parameter, φ: the lower the weight assigned

to the future and the less efficient is learning in technology, the wider the range of initial sit-

uations that can potentially induce this case of technological sclerosis. In contrast, when the

economy is far enough the frontier, investing human capital in technological upgrading makes

sense, and the economy eventually catches up the stagnant locomotive at finite time. But since

leapfrogging is not optimal in our model, this case also yields technological sclerosis at finite

time. Interestingly enough, transitory periods of technological progress only occur in the most

lagged countries (relative to the locomotive) in such a stagnant environment featuring the pre-

industrial era.

3.2 Catching-up with a growing “locomotive”

We now consider the more contemporaneous case of locomotives growing at strictly positive

growth rates. The induced technological evolution in the follower countries is then drastically

different from the one featured for the stagnation case above.

Proposition 2 Let γ > 0.

(i) The necessary condition for u = 0 to be optimal is A0(0)
A(0) ≤ 1 + ρ(1−α)

φ . Furthermore, u = 0 can

only be optimal for a finite time adjustment period, that is when t ≤ 1
γ ln

(
[ρ(1−α)+φ]A(0)

φA0(0)

)
.

(ii) Along the BGP, all the variables, except u, grow at constant rates gA = γ, gC = gK = gY =
γ

1−α . The human capital share in the technology sector is the unique positive solution of γ(1−u)
(1−α)u =

ρ+γ +φuθ. It is increasing in the rate of technological progress carried out by the leader, du
dγ > 0.
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The proposition has several interesting results. In contrast to periods of technological stagna-

tion, having a growing locomotive always prevents from getting into technological sclerosis in

the long-run. As in the standard neoclassical growth model, BGPs exist with the growth rate

of technology equal to the locomotive’s. Moreover, the faster the locomotive, the more human

capital the economy will put in the technology sector (although A(t) will not converge in level

to A0(t)). Nonetheless, the economy can choose to experience a period of zero technological

progress, exactly as in the stagnation case studied above and under the same condition on the

initial technological gap. However, this period is transitory, and it features a kind of adoption

delay. Adoption is delayed because the planner finds it optimal to put all the human capital

resources in the final good sector in the short-run (given the weight assigned to present con-

sumption) and to take advantage of the technological push of the locomotive in later stages

(when the weight assigned to consumption is low enough). In this sense, this paper uncovers a

new case for delaying adoption (see Boucekkine et al., 2004, for more insight into the literature

of adoption delays). The lower the initial technological gap, the longer the adoption delay. The

delay is also decreasing in the exogenous pace of technological progress, γ, and learning, φ,

while it grows with the discount rate, ρ.
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Appendix (not intended for publication)

A. Lemma

Before the main result, we have the following lemma which is used in the proof of the proposi-

tion.

Lemma 1 If there is a balanced growth path and 0 < u(t) < 1, then along the BGP, u(t) = u ∈ (0, 1)

is a constant.

Proof If there is BGP, then along the BGP, the market clearing condition (5) is uegut+leglt = 1,

where constants u and l are labors in different sectors when the BGP starts.

Due to the fact that labor force is finite, the growth rates gu and gl can not be both positive

and from market clearing condition can not be both negative. As mentioned previously l = 0

cannot be optimal, hence we must have gl = 0. For the case u > 0, we must also have gu = 0.

Therefore gu = gl = 0 and along the BGP both u and l are positive constants with u + l = 1.

We finish the proof.

B. Proof Proposition 1: γ = 0 and A0(t) = A0(0)

Suppose the optimal balanced growth path starts from some time t = t̃ ≥ 0 and along the BGP

u(t) = 0 for t ≥ t̃. Then from labor market clearing condition, we have l(t) = 1. Obviously, it is

possible that t̃ = 0, where there is no imitation at all; or t̃ > 0, which reads there may be some

imitation during some period until t̃.

In the case of no imitation, t̃ = 0, the state equations and the first order conditions are




K̇ = A(t)Kα − C(t)− δK(t),

Ȧ = 0,
Ċ
C = αA(t)Kα−1 − (ρ + δ),

µ̇2(t) = ρµ2 − Kα

C
,

µ2(t)φ
(
A0(t)−A(t)

)
+ ξ(t) ≤ (1− α)A(t)Kα

C
(= w(t)),

ξ ≥ 0.

(12)
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The 2nd equations reads A(t) = A(0) < A0(t) for all t > 0. Hence the 3rd equations shows

that gC + (ρ + δ) = αA(0)K(t)α−1 which holds if and only if K(t) = K is a constant. And

the 1st equations presents gC = 0. As by products, we also have K =
(

ρ + δ

αA(0)

) 1
α−1

, C =

Kα(A(0)− δK1−α). Therefore, consumption-capital ratio is
C

K
=

ρ + (1− α)δ
α

.

The 4th equations in (12) leads to
µ̇2

µ2
= gµ2 = ρ − Kα

Cµ2
which is a constant if and only if

µ2(t) = µ2 is a constant (or gµ2 = 0). Moreover, µ2 =
1
ρ

K

C
Kα−1 =

ρ + δ

ρ(ρ + δ(1− α))A(0)
.

Combining the last two inequalities in (12), it yields

0 ≤ ξ ≤ (1− α)A(0)Kα−1 K
C − φµ2(A0(0)eγt −A(0))

=
ρ + δ

ρ(ρ + δ(1− α))
[ρ(1− α) + φ)]A(0)− φA0(0)eγt

A(0)
.

(13)

With γ = 0, the necessary condition for the above inequality holds is [ρ(1 − α) + φ]A(0) −
φA0(0) ≥ 0 or equivalently

A0(0)
A(0)

≤ ρ(1− α) + φ

φ
= 1 +

ρ(1− α)
φ

.

When t̃ > 0 and u > 0 for at least 0 < t < t̃, the state equations and the first order conditions

are 



µ2(t)φ
(
A0(t)−A(t)

)
=

(1− α)A(t)Kα(1− u(t))−α

C
(= w(t)),

K̇ = A(t)Kα(1− u(t))1−α − C(t)− δK(t),

Ȧ = φu(A0(t)−A(t)),
Ċ

C
= αA(t)Kα−1(1− u(t))1−α − (ρ + δ),

µ̇2(t) = (ρ + φu)µ2(t)− Kα(1− u(t))1−α

C
.

(14)

Substituting the 3rd equation into the 1st one, it yields µ2
Ȧ

A
= µ2gA =

(1− α)uKα(1− u(t))−α

C
.

Dividing the 3rd equation by A(t) leads to gA = φu

(
A0(0)

A
e(γ−gA)t − 1

)
, which is a constant if

and only if gA = γ where A is the technology level along BGP. The situation of γ is zero or not,

the results are different.

With γ = 0, it must follow, from the 3rd equation, A(t) = A0(t) = Â0 which is the catching-

up steady state.
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If the leading technology reaches its steady state while the underdeveloped one keeps im-

itation, sooner or later, the underdeveloped one will catch up to the steady state level of the

leader. Furthermore, since along the BGP, u is constant and there is nothing more to learn,

hence, we must have along the BGP, u = 0.

We denote this special time t̃ = t. Hence, we can conclude that before t, there is imitation

and u > 0. From t = t, there is catch-up in technology and no need for imitation, u = 0,∀ t > t.

That finishes the proof.

C. Proof Proposition 2: γ > 0

Part (i) Notice, u = 0 is one of the solutions and is sufficient for the optimization problem due

to Kuhn-Tucker condition. Then, repeating the proof of Proposition 1 until (13), with γ > 0, the

necessary condition for the last inequality in (13) is

[ρ(1− α) + φ]A(0)
φA0(0)

≥ eγt or t ≤ 1
γ

ln
(

[ρ(1− α) + φ]A(0)
φA0(0)

)

which makes sense if

[ρ(1− α) + φ]A(0) ≥ φA0(0).

Therefore, the necessary condition for u = 0 to be an optimal solution is
A0(0)
A(0)

≤ ρ(1− α) + φ

φ
=

1 +
ρ(1− α)

φ
and maximum time is t ≤ 1

γ
ln

(
[ρ(1− α) + φ]A(0)

φA0(0)

)
.

Part (ii) With u > 0 and slackness condition in (9), we must have ξ = 0. Hence, the state

equations and the first order conditions are given by (14).

Suppose there is BGP, and by Lemma 1, it follows u(t) = u.

Substituting the 3rd equation of (14) into the 1st one, it yields

µ2
Ȧ

A
= µ2gA =

(1− α)uKα(1− u(t))−α

C
(15)

where A is the technology level along BGP.

Dividing the 3rd equation by A(t), it yields gA = φu

(
A0(0)

A
e(γ−gA)t − 1

)
which is a con-

stant if and only if gA = γ. With γ > 0, along the BGP, the 4th equation reads gC = αAeγt(1 −
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u)1−αK
α−1

egK(α−1)t − (ρ + δ), or

gK =
γ

1− α
gC + ρ + δ = α(1− u)1−αAK

α−1
. (16)

The 5th equation is equivalent to
µ̇2

µ2
= ρ + φu− (1− u)1−αKα

µ2C(t)
. Substituting (15) into it, we

have

gµ2 = ρ + φu− (1− u)γ
(1− α)u

. (17)

Dividing the 2nd equation by K(t) and rearranging the term, il yields gK = AK
α−1(1 −

u)1−αe(gA−(1−α)gK)t − δ − C

K
e(gC−gK)t. Since gA = γ = (1− α)gK , it must follow

gC = gK =
γ

1− α
, gK = AK

α−1(1− u)1−α − δ − C

K
. (18)

Combining (18) and (16), we obtain
γ

1− α
+ρ+δ = α(1−u)1−αAK

α−1 = α

(
γ

1− α
+ δ +

C

K

)
.

Hence, consumption-capital ratio along the BGP is

C

K
=

γ + (1− α)δ + ρ

α
. (19)

Taking derivative of (15), diving by µ2, and rearranging terms, it follows

gmu2 = αgK − gC = −γ. (20)

Combining (20) and (17), il yields

γ(1− u)
(1− α)u

= ρ + γ + φu, u > 0. (21)

Define f(u) = ρ + γ + φu, g(u) =
γ(1− u)
(1− α)u

. It is easy to check f(0) = ρ + γ > 0, f ′(u) >

0, f(1) = ρ + γ and lim
u→0

g(u) = +∞, g′(u) = − γ

(1− α)u2 < 0, g(1) = 0. Therefore, (21) gives

one and only one solution of u, such that 0 < u < 1.

Effect of γ. Let us now prove that u is increasing with respect with γ.

Taking total differential with respect to γ and u in equation (21) and rearranging terms, il

follows

[γ(2− γ) + ρ(1− α) + 2(1− α)u]du = (1− (2− α)u)dγ.
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Hence,
du

dγ
=

1− (2− α)u
B(γ, u)

,

where B(γ, u) = γ(2− γ) + ρ(1−α) + 2(1−α)u is always positive, as long as γ ≤ 2. Therefore,

the sign of du
dγ will only depend on (1− (2− α)u).

Denote X(u) = 1 − (2 − α)u. It is easy to check X(0) = 1, X(1) = −(1 − α) < 0 and

X ′(u) = −(2 − α) < 0, that is, X(u) is decreasing in term of u ∈ (0, 1). And at u∗ = 1
2−α ,

X(u∗) = 0.

Furthermore, f(u∗) = ρ + γ + φ(u∗) and g(u∗) = γ < f(u∗), which states that u < u∗. And

hence at u, X(u) > 0. As a result, it yields du
dγ > 0. We finish the proof.
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