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Abstract

The breakdown of the Bretton Woods system and the adoption of generalized
�oating exchange rates ushered in a new era of exchange rate volatility and uncer-
tainty. This increased volatility lead economists to search for economic models able
to describe observed exchange rate behavior. In the present paper we propose more
general STAR transition functions which encompass both threshold nonlinearity and
asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime
to another, and considers threshold e¤ects by encompassing other existing models,
such as TAR models. We apply our methodology to three di¤erent exchange rate
data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec-
ond emerging market economies using black market exchange rates and the third
for OECD economies.
JEL Classi�cation: C16, C22, F31
Keywords: unit root tests, threshold autoregressive models, purchasing power

parity.
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1 Introduction

The breakdown of the Bretton Woods system and the adoption of generalised �oat-

ing exchange rates ushered in a new era of exchange rate volatility and uncertainty.

This increased volatility lead economists to search for economic models able to de-

scribe observed exchange rate behavior. Purchasing Power Parity (hereafter PPP)

is often the relationship economists �rst turn to when trying to explain longer run

exchange rate behavior and as a consequence it is probably one of the most inves-

tigated international parity conditions. Early empirical tests of PPP used linear

models and were based on variants of the Dickey-Fuller (DF) regression. The em-

pirical evidence from such "�rst generation" tests of PPP essentially failed to �nd

much supportive evidence (see Meese and Rogo¤ (1988) and Mark (1990)). As an

alternative, the empirical analysis of PPP shifted to testing for cointegration be-

tween nominal exchange rates and relative prices. For example, Lothian and Taylor

(1996) argued that the lack of empirical evidence in favour of PPP was due to

the low power of unit root tests in small samples. Following Lothian and Taylor

(1996) researchers employed longer spans of data and found, in some cases, evidence

supporting PPP. Engel (2000), however, criticised this approach since it involved

using data spanning di¤erent exchange rates regimes and demonstrated that it can

generate spurious rejection of the null hypothesis of a unit root.

"Second generation" tests of PPP advocated a di¤erent approach. Since the main

problem with unit root tests is their lack of power in small samples, such second

generation tests suggested pooling data together using both time series and cross

sectional dimensions. The literature employing panel unit root and cointegration

methods grew very rapidly producing consistent evidence in favour of PPP. However,

O�Connell (1998) questioned this approach and showed that the empirical evidence

of PPP from panel unit root and cointegration tests mainly arose from neglecting

cross sectional dependence.

The econometric approaches noted above have considered PPP within a linear

framework. However, there are now reasons to believe that the exchange rate is

not in fact driven by a linear stochastic process. For example, Dumas (1992), Secru

et al. (1995) and Berka (2004) show that transaction costs can create a band of

inaction when the marginal cost of arbitrage exceeds the marginal bene�t. In this

circumstance, the existence of transaction costs and other impediments to trade

- such as transportation costs, tari¤s and quotas in international trade - drives a

wedge between prices in di¤erent locations. That is, when the marginal bene�t is

greater than the cost in absolute value, trade takes place to exploit evident pro�t

opportunities and PPP deviations are corrected. On the other hand, when the
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marginal bene�t is smaller than the marginal cost in absolute value, no trading

takes place and PPP deviations are not corrected. In other words, in the presence

of transactions costs, deviations from PPP will be non-equilibrium-reverting as long

as they are smaller than the cost, and equilibrium reverting once they exceed costs.

Based on this condition, the theoretical work cited above stresses the importance of

these costs in modelling deviations from the equilibrium and provides a theoretical

framework for nonlinear models used in empirical work.

Following more or less the same theoretical argument, many empirical mod-

els have implemented nonlinear adjustment for real exchange rates. For example,

Obstfeld and Taylor (1997) and Sarno et al. (2004) employ a threshold autoregres-

sive (hereafter TAR) model and Michael et al. (1997), Sollis et al. (2002), and

Kapetanios et al. (2003) use smooth transition autoregressive (hereafter STAR)

models. Within such frameworks, the nonlinear dynamics of the adjustment process

can capture the e¤ect of transaction costs. In a TAR model, an inaction bound is

considered within which the exchange rate follows a random walk process. Outside

the threshold, a symmetric type of adjustment takes place. One of the few papers

which takes a di¤erent approach is Sollis et al. (2002), who allows for asymmetric

mean reversion. However key main problem with the STAR models is that they

only consider a narrow �inner�regime, while assumptions underpinning PPP would

suggest a �neutral�band.

Michael et al. (1997) argued that non-linear exchange rates models should con-

sider a symmetric type of mean reversion because adjustments to deviations from

PPP should be the same for both positive and negative deviations from equilibrium.

However, Sollis et al. (2002) demonstrates empirically that estimates show stronger

mean reversion when the real exchange rate is below the mean than when it is posi-

tive. An explanation for this could run along the following lines. Persistent and large

deviations from PPP can have important implications for a country�s competitive-

ness and its net exports. In instances where a currency is overvalued governments

are much more likely to intervene in foreign exchange markets and /or use interest

rate changes to a¤ect the potentially deleterious e¤ect on competitiveness than they

are when the currency is undervalued. These empirical results show the necessity of

considering asymmetric e¤ects together with an inaction band when modeling the

nonlinear dynamics of PPP.

The contributions of this paper are threefold. First, we propose more general

STAR transition functions which encompass both threshold nonlinearity and asym-

metric e¤ects. Our framework allows for a gradual adjustment from one regime to

another, and considers threshold e¤ects by encompassing other existing models, such
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as TAR models. We allow the processes to follow a unit root in the band of inac-

tion and test it against the alternative of a globally stationary STAR, by extending

the in�mum t�test recently suggested by Park and Shintani (2005). Second, we
present some Monte Carlo simulations and show that the test has good size and

power. Finally, we apply the proposed test to two di¤erent exchange rate data-sets,

one for developing countries, and o¢ cial nominal exchange rates, and the second for

emerging market economies using black market exchange rates. Much of the extant

testing of PPP has involved using data from developed industrial countries and little

if any has been conducted using data from emerging market countries. The work

that has been conducted uses o¢ cial exchange rates and as Reinhart and Rogo¤

(2002) note, such rates can be profoundly misleading as they are unlikely to be mar-

ket determined. However, one of the unique features of emerging markets economies

is that they have very well developed black markets for foreign exchange and the

rates determined in these markets are fully market determined. Such black market

exchange rates have a long tradition and in many cases have also been supported

by governments. In fact, generally, the volume of transactions in black markets is

even larger than that in the o¢ cial market. Although black market exchange rates

play such a major role in emerging market economies, it is surprising to note that

very few papers use this major source of information to investigate real exchange

rates dynamics. The present study attempts to �ll the existing gap in the literature.

Our results provide evidence suggesting that for several currencies, the asymmetric

STAR model characterizes well deviations from PPP. In turn, these results are con-

sistent with previous studies on transaction costs in international market arbitrage

and the importance of considering asymmetric adjustment in deviations from PPP.

The remainder of this paper is organized as follows. In the next section we

provide an overview of the existing analysis of real exchange rate behaviour, from

the basic theory to nonlinear empirics. We also present a theoretical justi�cation

for using the information conveyed by nonlinear and multi-regime approaches. Sec-

tion 3 summarizes previous empirical work using nonlinear unit root tests and then

proposes our models along with the estimation method and the properties of our

proposed models. The empirical results of our real exchange rate modeling using

black market exchange rates are contained in section 5. Section 6 concludes the

paper.
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2 Testing for PPP

The fundamental basis of PPP is the law of one price (hereafter LOP). In a two-

country setup with homogenous traded goods, the LOP states that identical goods

should sell at the same price when there are no impediment to international trade,

such as transportation costs and tari¤s. The LOP for good i may be expressed as:

P it = StP
i�
t ;

where P i denotes the price of the good i, S is the nominal exchange rate (domestic

price of foreign currency) and an asterisk represent a foreign magnitude. Therefore

the country�s nominal exchange rate is determined as the ratio of the price levels

at home and abroad. Assuming a measure for the price level, Pt and P �t ; we can

therefore write,

St =
Pt
P �t
:

This relationship implies that movements in the nominal exchange rate should be

proportional to the ratio of national price levels and therefore the real exchange

rate should be constant. De�ning the logarithm of the real exchange rate, qt; in the

conventional way as:

qt = st � pt + p�t ; (1)

where st is the logarithm of nominal exchange rate (domestic price of foreign cur-

rency) and pt and p�t are the logarithms of domestic and foreign price levels, respec-

tively. Therefore the real exchange rate can be seen as a measure of deviations from

PPP. In practice, empirical applications of PPP use the real exchange rate according

to the above de�nition and aggregate national price indices. The real exchange rate

can be driven away from its PPP equilibrium value due to, for example, exchange

rate market intervention or non-zero interest di¤erentials. One way of capturing

this idea is to use the real exchange rate model below and test for a unit root:

qt = �qt + � + "t; (2)

where 0 < � < 1 is the parameter of mean reversion, the random error term, "t; is

normally and independently distributed over time and � is constant. In terms of

unit root tests, the idea is to search for the stationarity of the real exchange rate.

That is, since the real exchange rate can be interpreted as a deviation from PPP, a

necessary condition for PPP to hold is that the real exchange rate is stationary over

time and not driven by permanent shocks.
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Recently, PPP researchers have attempted to incorporate non-linearities into

real exchange rate behaviour. For example, in the presence of transaction costs

and trade barriers, Dumas (1992) and Berka (2004) a non-linear adjustment process

better describes exchange rates dynamics. In this context, traditional PPP is then

de�ned as:

st = � + pt � p�t ;

where � is the symmetric transportation costs or other impediments between the

home and foreign country trade. Since the relative price �uctuates in a range �� <
pt
p�t
< �, deviations from PPP are permissible as in:

�� < qt < �:

To this argument Berka (2004) recently shows that if transportation costs depend

on distance, the range of variation in the relative price will also depend on that

distance. However, sunk costs may widen the band above and below that associated

with simple trade restrictions. In this context, it is argued that deviations from PPP

should follow a nonlinear mean-reverting process with the speed of mean reversion

depending on the magnitude of the deviation from PPP.

Figure (1) graphically describes the properties of the band of inaction when

p is the relative price of goods. In terms of the LOP, p can be then viewed as

the real exchange rate. Figure (1) shows several important features of nonlinear

exchange rates adjustment. As a function of current price, the expected change in

prices is: (i) negative when the deviation from parity is positive and vice versa;

(ii) a curvature near the edge suggests that larger deviations from parity imply

faster adjustments; (iii) the shape of the function depends crucially on the relative

risk aversion parameter. In fact, the lower the risk aversion, the less sensitive ex-

ante bene�ts of diversi�cation achieved by shipping. A low degree of risk aversion

consequently makes rebalancing of physical capital less desirable, which implies a

slower mean reversion.

Thus non-linear models better describe exchange rates dynamics and a sub-

stantial amount of empirical research has now employed them and found evidence

supporting PPP. For example, Obstfeld and Taylor (1997), and Sarno et al. (2004)

used TAR models. These models capture the e¤ects of transaction costs on ex-

change rates dynamics. Michael et al. (1997), Sollis et al. (2002), and Kapetanios

et al. (2003) use instead STAR models to capture non-mean-reverting regime. TAR

and STAR models have been largely used in empirical applications and provided

encouraging results supportive of PPP. However, and as already pointed out, most
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Figure 1: Conditional Expected Change of The Real Exchange Rate

of these models only consider symmetric adjustments except Sollis et al. (2002).

Furthermore, STAR models only assume a narrow �inaction�bound.

In the next sections we shall present a more general econometric framework which

encompasses both the theoretical and empirical arguments mentioned above. We

suggest a transition function which allows for threshold e¤ects and asymmetrical

adjustments when the real exchange rate is away from equilibrium.

3 Non-Linear Unit Root Tests

3.1 The Model

Consider the following Dickey-Fuller (DF) regression

�yt = �yt�1 + ut;

where yt is mean corrected series and ut � i:i:d:.
To accommodate non-linearity the following transition function S(yt�d; �) is in-

troduced. Here, yt�d is the transition variable with lag delay d � 1, � is a parameter7



Model Transition Function: S(yt�d; �) Parameter: �
ESTAR 1� exp (�
y2t�d) 


Asymmetric STAR [1+ exp f(�
21y2t�d)I t+(�

2
2y
2
t�d)(1� I t)g]

�1�1
2

1; 
2

3-Regime SETAR 1fyt�d� c1g+ 1fyt�d� c2g c1; c2

Table 1: Transition Functions

set that has to be estimated and S(yt�d; �) is then a real value function that takes

values between zero and one. The DF regression can be written as

�yt = �S(yt�d; �)yt�1 + ut; (3)

where ut � i:i:d:.1

Using the DF regression above one can then test the unit root null hypothesis

H0 : � = 0;

against the alternative

H1 : � < 0:

The transition functions S(yt�d; �) considered in the literature are given in Table

(1). The unit root test with exponential smooth transition autoregressive (hereafter

ESTAR) was suggested by Michael et al. (1997) and Kapetanios et al. (2003). In

their framework, the function is bounded between 0 and 1, and its value depends

on the value of the parameter 
. Transition between the central and outer regimes

occurs with deviations of yt�d from the mean, �; and the speed of transition increases

with the value of 
. Speci�cally, when yt�d = �, the transition function S(yt�d; �)

takes the value zero and the speci�cation (3) follows an I(1) process. With the

ESTAR the unit root regime is therefore an inner regime and mean-reversion an

outer regime. This model collapses to a linear model with scale parameter, 
.

The asymmetric STAR was introduced in Sollis et al. (2002). The model has

similar properties to the ESTAR but it allows asymmetric scale parameters, 
1
and 
2. In addition, the transition function S(yt�d; �) is bounded from 0 to 0:5

1In Dickey-Fuller framework, yt = �yt�1 + "t. When we consider a transition function, S(�),
the model is reparameterized as

�yt = �yt�1 + �S(�)yt�1 + "t
where � = �� 1. Imposing � = 0 our speci�cation is given

�yt = �S(�)yt�1 + "t
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when the 
1and 
2 have su¢ ciently large values. The fundamental properties of the

asymmetric STAR movement between regimes are the same as the ESTAR function

and, obviously, for 
1 = 
2 it encompasses the symmetric model.

In a TARmodel, initially proposed by Tong (1990), a change in the autoregressive

structure occurs when the level of the series reaches a particular threshold value.

Since the introduction of TAR models there have been several variations of them,

such as the 3-regime self-excited TAR (hereafter SETAR) introduced in Kapetanios

and Shin (2003). The threshold variable considered in such a model is taken to be the

lagged value of the time series itself, yt�d. In the central state, when�c1 < yt�d < c2,
S(yt�d; �) = 0, and in the limiting outer states, when yt�d � c1 and yt�d � c2,

S(yt�d; �) = 1.

3.2 Symmetric Transition Function

We propose a transition function that should bridge the gap between the PPP theory

and the existing empirical evidence. We specify a transition function S(yt�d; �) with

a middle-regime value of � that occurs when �c < yt�d < c. Crucially, this middle-
regime is the in�mum of the function, so that the process is less persistent either

side of its equilibrium threshold rather than just one side. We add an indicator

function to the logistic function to allow it to take certain values either sides of the

threshold. Consider, for example, the Heavyside indicator function It,2

It =

(
1

0
, if

yt�1 < 0

yt�1 � 0

with the logistic function

S(yt�d; �) = [1 + expf
(yt�d � c)It � 
(yt�d + c)(1� It)g]�1 (4)

where the parameter set � includes the scale parameter 
 and the threshold c.

The function (4) should allow for both threshold e¤ects and smooth transition

movements of yt�d. In the central regime, when �c < yt�d < c, S(yt�d; �) = 0, the
random variable considered follows an I(1) process. In the limiting outer regimes,

when yt�d < �c and c < yt�d, S(yt�d; �) = 1 it follows an I(0) mean reverting

process. The speci�cation given by (4) allows for a random walk in the central

regime and the limiting outer regime of the model is a stationary autoregression.

2The Heavyside indicator has been used by Enders and Granger (1997) who introduced TAR
methology into Dickey-Fuller test, in which the change in autoregressive structure under the al-
ternative hypothesis takes place instantaneously as the lagged level of the series in a standard
Dickey-Fuller speci�cation reaches a particular threshold, or not at all.
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Figure 2: Properties of ESTAR, Asymmetric STAR, CMK-STAR Functions

Note that this type of approach is also consistent with a 3-regime SETAR.

3.3 Asymmetric Transition Function

We now consider asymmetric e¤ects and change the transition function as follows

S(yt�d; �) = [1 + expf
1(yt�d � c1)It � 
2(yt�d � c2)(1� It)g]�1 (5)

where the parameter set, � includes the scale parameter 
i and threshold ci when

i = 1; 2.

The desired neutral band, implied by the PPP theory, occurs when c1 < yt�d <

c2. This function is also consistent with a symmetric transition. However, if 
1 6=

2 and c1 6= c2, then with changes in yt�d, the transition function S(yt�d; �) is

asymmetric.

To illustrate and compare the nature of our proposed models (4) and (5) with

other STAR models, we perform a simulation with our CMK-STAR, ESTAR and

asymmetric ESTAR. Since the parameters of an asymmetric function include that

of symmetric, the functions in Figure (2) are simply plotted for the same symmetric

threshold values of yt�d; where d = 1 with six di¤erent scale parameters 
. We

consider a sequence of yt�1 2 [�0:5; 0:5], threshold parameter c = 0:4 and various
values of the speed parameter 
 ranging from 0:1 to 100. Figure (2) shows the results.
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When the function moves between 0 and �1 as yt�1 changes, the shape is determined
by the size of 
. As expected small values of 
, for example, 
 = 0:1 generate

slow transitions (near unit root), whereas large values, say 
 = 100; generate rapid

transitions. While all the functions tend to become �at as the scale parameter goes to

zero, the exponential and CMK-STAR are close in the medium scale parameter such

as 5 or 25. On the other hand, as the value of the scale parameter, 
; increases, the

shape of the transition function become di¤erent and the CMK-STAR, as expected,

tend to become discontinuous. Thus we are able to trace many observations in the

immediate neighborhood of the threshold value c.

3.4 Estimation Method

With nonlinear models, consistent estimation of parameters can be obtained by

ordinary least squares or, equivalently, maximum likelihood under the Gaussian

assumption. The estimation technique begins by setting a proper grid over the

parameters and at each point in the grid minimizing the residual sum of squares with

respect to the remaining parameters in the model. In the presence of autocorrelation

we suggest using the following modi�ed Dickey and Fuller (1979) regression:

�yt = �S(yt�d; �)yt�1 +

pX
i=1

�i�yt�i + "t; (6)

where "t � i:i:d: and S(yt�d; �) the symmetric or asymmetric function described

above.

Consider for simplicity the case when p = 0 in the equation above. In the central

regime the model follows an I(1) process, since S(yt�d; �) = 0. On the other hand,

outside the inner regime, the model becomes �yt = �yt�1 + "t since S(yt�d; �) = 1.

This speci�cation therefore allows for an I(1) central regime and the limiting outer

case of the model is a stationary autoregression. The appropriate parameters to be

estimated are �, � and the parameter set of transition function, �.3 We estimate

these parameters considering various values for d in descending order and choose

the value of d obtained in the model with the smallest residual sum of squares. This

approach was also used in Peel et al. (2001). The coe¢ cient, p is determined using

a general-to-speci�c approach at the 10% level of signi�cance.

To overcome the problem of unidenti�ed parameters raised in Davies (1987),

Leybourne et al. (1998) suggested calculating the test statistics over a grid set of

possible values with summary statistics. The estimation of � in equation (6) can be

3Apart from d and p
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obtained by using OLS as

�̂(�) =

 
TX
t=1

xt(�)xt(�)
0

!�1 TX
t=1

xt(�)�yt

!
;

with residuals "t = yt � �̂(�)0xt(�) where xt(�) = [S(yt�d; �)yt�1;�yt�1; :::;�yt�p].
Note that under the assumption that "t is normally distributed, the resulting es-

timates are equivalent to the maximum likelihood estimates. Finally, the parameters

of interest can be estimated by the following conditional least squares,

~� = argmin
�

TX
t=1

(yt � �̂(�)0xt(�))2 = argmin
�
�̂2(�); (7)

Leybourne et al. (1998) argue that this method reduces the dimensionality of the

nonlinear least square estimation problem considerably. However, from the simula-

tion experiments undertaken using the GAUSS OPTIMUM library, convergence was

found to be di¢ cult to achieve because of the initial value problem and parameter

dimensionality in asymmetric speci�cations.

To circumvent local minima and parameter dimensionality problems, the esti-

mation method used is based on the in�mum t�test recently suggested by Park and
Shintani (2005). Therefore, we �rst calculate:

s(�̂(�)) = �̂2

 
TX
t=1

xt(�)xt(�)
0

!�1
;

where �̂2 =
TX
t=1

"2t=(T � p� 1).

The relevant in�mum t�statistic is then given by

t(�̂) =
�̂(�)

s(�̂(�))
;

where s(�̂(�)) is the standard error of the estimate �̂(�). Since
TX
t=1

xt(�)xt(�)
0 de-

pends on the parameters �, the t�statistic is conditional. The in�mum of t(�) is

therefore taken over all values of �. Following Park and Shintani (2005) we de�ne �̂

by

�̂ = argmax
n
t2(�) j �̂(�) < 0; �

o
:

In the presence of unidenti�ed parameters, the parameter values for the optimiza-
12



tion are obtained by grid search over c and 
. A meaningful set of values for the

threshold parameter c is then de�ned as sample percentiles of the transition vari-

able as suggested by Caner and Hansen (2001). For the threshold parameter c of

the model, we therefore set the parameter space as

[Q(15); Q(85)]; (8)

where Q(15), Q(85) are the 15th and 85th percentiles of yt�d respectively.

At the same time, to determine a useful set of scale parameter 
, Dijk et al.

(2002) suggested re-scaling the transition function with the sample standard devi-

ation, which makes 
 approximately scale-free. That is, the transition parameter

was standardized through by its sample variance. We therefore estimate the scale

parameter 
 over the interval given by:

[10�1Pn; 10
3Pn]; (9)

where Pn = (
nX
t=1

y2t
n
)�

1
2 .

However, the estimate of 
 may be rather imprecise and often appears to be

insigni�cant because of the fact that even large changes in 
i only have a small e¤ect

on the shape of the transition function. As shown in the �gure (2), we need to trace

many observations in the immediate neighborhood of c. Therefore, at each step,

the parameters set were estimated so as to maximize the sup-Wald test statistics.

The combination of parameters, c and 
 values that provide the overall maximum

of the sup-Wald test statistics were then chosen as the estimated parameters for the

model.

4 Monte Carlo Experiments

In order to clarify the advantage of our model with respect to alternatives we per-

form an additional simulation and compare the proposed model with representative

regime switching models, such as, ESTAR and 3-regime SETAR, using a sequence

of yt�1 2 [�0:5; 0:5], � = �0:3 and, for simplicity, symmetric value of threshold
parameter, c = 0:5 and scale parameter, 
 = 5.

In terms of theoretical implications, Figure (3) shows that our proposed model,

CMK-STAR, most closely mimics the behavior of the real exchange rate movement

predicted by Dumas (1992) and Berka (2004) when the level of relative risk aversion

is low. On the other hand, the ESTAR is not able to capture these dynamics (i.e.

13



Figure 3: Simulated Conditional Expected Change Functions

the inaction bound) under any parameterization. The main limitation with 3-regime

SETAR models is that the change is restricted to take place instantaneously, or not

at all. That is, while the 3-regime SETAR o¤ers an improvement over the ESTAR

by considering a neutral band, it is still misspeci�ed if the transition is gradual

rather than instantaneous.

The critical values associated with our symmetric and asymmetric CMK-STAR

models can be calculated using the same estimation procedure, as suggested above.

The null distribution of the test was therefore simulated using Monte Carlo simu-

lation methods under the random walk assumption. Therefore, a driftless random

walk with standard normal error term, ut~i:i:d was chosen as data generating process

(hereafter DGP) with d = 1. A sample sizes of 1; 000 observations and 10; 000 repli-

cations were considered. Critical values at 1%, 5% and 10% signi�cant levels are

given in Table (2). The critical values for all of the symmetric and asymmetric tests

are, in general, more negative than those for the corresponding standard Dickey-

Fuller test.

We now report size and power analysis and compare our test with the DF test.

For the size all results are empirical rejection frequencies from 10; 000 replications
14



Asymptotic Critical Values

Transition function 1% 5% 10% 90% 95% 99%

Symmetric STAR -3.89 -3.30 -3.02 -0.92 -0.48 0.24

Asymmetric STAR -3.81 -3.23 -2.94 -1.02 -0.69 -0.11

Table 2: Asymptotic Critical Values

� = -0.5 0 0.5

tSNL tASNL tDF tSNL tASNL tDF tSNL tASNL tDF
k = 0
T =100 0.4571 0.4306 0.3829 0.0643 0.0554 0.0556 0.0359 0.0359 0.0328

200 0.4660 0.4621 0.3977 0.0591 0.0509 0.0495 0.0336 0.0353 0.0324

300 0.4886 0.4660 0.3925 0.0622 0.0495 0.0512 0.0330 0.0307 0.0324

k = 1
T =100 0.0622 0.0491 0.0528 0.0625 0.0522 0.0552 0.0659 0.0543 0.0503

200 0.0536 0.0495 0.0508 0.0603 0.0510 0.0530 0.0608 0.0533 0.0520

300 0.0531 0.0499 0.0555 0.0547 0.0550 0.0548 0.0611 0.0492 0.0514

k = 4
T =100 0.0539 0.0462 0.0443 0.0556 0.0484 0.0457 0.0592 0.0494 0.0461

200 0.0516 0.0501 0.0533 0.0594 0.0464 0.0460 0.0591 0.0493 0.0437

300 0.0571 0.0452 0.0490 0.0588 0.0467 0.0461 0.0583 0.0519 0.0487

Table 3: Size of Symmetric and Asymmetric CMK-STAR

when the underlying DGP is a random walk process with serially correlated errors.

Since the tests are based on demeaned data, we employ the same process here. To

examine the power of the tests, we follow Park and Shintani (2005) and use the

following DGP,

�yt = �S(yt�d; �)yt�1 + ��yt�1 + "t; (10)

where ut follows the standard normal distribution. We consider how the size is

a¤ected by the parameter � and consider the sample sizes 100, 200, and 300, where

� = 0 and � = f�0:5; 0; 0:5g respectively. For comparison we also report the size
for the DF statistics tDF . The tASNL test is generally close to its nominal level at 5%.

It is important to note what also reported in Sollis (2005), that is, under-�tting

the number of lags lead to size distortions, while over�tting leads to smaller size

distortions.

We now turn to the power analysis where use the GDP above in conjunction

with the following equation

�yt = �yt�1 + �S(yt�d; �)yt�1 + "t (11)

where � = 0:1 and � = �0:3 with asymmetric parameters for c and 
. Overall the
15



Asymmetric DGP T =100 200 300

c1 c2 
1 
2 tSNL tASNL tDF tSNL tASNL tDF tSNL tASNL tDF
-3.5 0.5 20 0.001 0.4340 0.5689 0.3074 0.8001 0.8803 0.5620 0.9571 0.9815 0.8502

1.5 0.4337 0.5735 0.3141 0.7992 0.8835 0.5640 0.9554 0.9821 0.8499

2..5 0.4359 0.5669 0.3114 0.8014 0.8831 0.5722 0.9566 0.9803 0.8401

0.5 0.1 0.1262 0.1268 0.1404 0.3271 0.3317 0.3754 0.6075 0.6447 0.7036

1.5 0.1272 0.1348 0.1483 0.3153 0.3428 0.3806 0.6055 0.6357 0.6944

2..5 0.1298 0.1256 0.1386 0.3178 0.3427 0.3792 0.6074 0.6495 0.7061

Table 4: Power of Symmetric and Asymmetric CMK-STAR

power of our tASNL is good, and it is generally superior to the ADF test. On the other

hand the ADF tests has a higher power when the time series are highly persistent.

5 Empirical Results

5.1 Linearity Test

The �rst step in estimating our proposed the model involves testing for linearity

against STAR nonlinearity. Testing linearity against STAR-type nonlinearity implies

testing the null hypothesis, H0 : � = 0 in equation (3). However, under the null,

the parameter set, � is not identi�ed. Alternatively, we could choose H 0
0 : 
 = 0 as

our null hypothesis in which case neither c nor � would be identi�ed. A solution

proposed by Luukkonen et al. (1988) and adopted by Terasvirta (1994) is to replace

the transition function S(yt�d; �) by the second order Taylor series approximation

around 
 = 0. With this linearized model, Harvey and Leybourne (2007) recently

suggest a standard Wald test, denoted by WT , which is shown to possess the usual

�2(2) distribution asymptotically. In this case testing for linearity is then performed

by an auxiliary regression,

yt = �0 + �1yt�1 + �2y
2
t�1 + �3y

3
t�1 +

pX
j=1

�j�yt�i + "t; (12)

which allow AR(p) structures.

Under the null hypothesis linearity is tested as

H0 : �2; �3 = 0:
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The alternative hypothesis of nonlinearity is then de�ned as

H1 : at least one of �2; �3 6= 0:

The test statistic is computed using the following procedure. First, estimate (12)

under the null hypothesis by OLS and calculate the residual sum of squares, RSS0.

Second, using the residuals from the previous step, estimate a model that contains

the regressors of (12) to compute the residual sum of squares RSS1. The test of H0
against H1 can be then carried out using the WT ;

WT =
RSS1 �RSS0
RSS0=T

� �2(2)

The WT will have an asymptotic �2 distribution with degree of freedom given by

the number of parameter restrictions under the null hypothesis.

5.2 Data and Preliminary Tests

In this empirical application we use monthly data on black market nominal exchange

rates and o¢ cial nominal exchange rates for twenty-�ve and thirty-eight emerging

market economies respectively. The former series are obtained from recent Cerrato

and Sarantis (2007), which covers 1973:01-1998:10. The nominal exchange rate data

set is retrieved from the International Monetary Fund�s International Financial Sta-

tistics (IFS) over the free �oating period 1980:1-2007:12. The data used are monthly

nominal and black market exchange rate against US dollar and CPIs (Consumer�s

Price Index) for both series. We work with demeaned data measured in logs.

We begin with the o¢ cial real exchange rates of thirty-eight emerging market

economies, and use the standard DF test tDF . The number of lags, p was determined

using the general-to-speci�c testing strategy at the 10% level of signi�cance, starting

with p = 12. The results from the standard tDF and the linearity test WT for the

real exchange rates are given in Table (5), along with the values of p for each series.

The tDF statistics in Table (5), suggests that the null hypothesis of a unit root is

rejected only in seven out of thirty-eight countries, thus providing evidence against

mean reversion.

To apply the linearity test, WT , we select the AR order in the regression (12)

using a general-to-speci�c methodology and a 10%-signi�cance level, (4:605), with a

maximum permittedAR order of four and a minimum order of two. We �nd evidence

of nonlinearity for nineteen real exchange rates. Therefore half of the series analyzed

exhibit evidence of nonlinearity and would suggest that nonlinear models may be

17



Country Duration T p tDF WT

Asian emerging market

India 1980:01-2007:10 334 2 -1.3941 16.355y

Indonesia 1980:01-2007:10 334 1 -1.7208 16.931y

Korea 1980:01-2007:10 334 2 -2.4181 38.366y

Malaysia 1980:01-2007:10 334 1 -0.8961 6.472y

Pakistan 1980:01-2007:10 334 2 -1.5478 3.445

Philippines 1980:01-2007:10 334 2 -1.7855 0.384

Singapore 1980:01-2007:10 334 12 -1.8375 0.199

Thailand 1980:01-2007:10 334 2 -1.3420 25.595y

Other emerging market

Algeria 1980:01-2007:10 334 4 -1.1741 31.469y

Argentina 1980:01-2007:10 334 2 -2.7553� 37.773y

Bolivia 1980:01-2007:10 334 0 -4.1298��� 127.924y

Botswana 1980:01-2007:10 334 2 -2.1014 3.457

Brazil 1980:01-2007:10 334 2 -2.2828 2.426

Burundi 1980:01-2007:10 334 0 -0.9976 16.158y

Chile 1980:01-2007:10 334 2 -1.7540 0.642

Columbia 1980:01-2007:10 334 2 -1.7773 4.743y

Costa Rica 1980:01-2007:10 334 2 -4.0042��� 3.579

Dominica Rep. 1980:01-2007:10 334 0 -2.3475 68.035y

Egypt 1980:01-2007:10 334 12 -1.9443 1.696

El Salvardor 1980:01-2007:10 334 1 -3.1679��� 27.660y

Ethiopia 1980:01-2007:10 334 2 -1.1152 2.934

Guatemala 1980:01-2007:10 334 0 -2.0960 47.866y

Haiti 1980:01-2007:10 334 0 -1.5733 3.171

Honduras 1980:01-2007:10 334 0 -2.5212 506.488y

Jamaica 1980:01-2007:10 334 4 -2.0329 13.569y

Jordan 1980:01-2007:10 334 1 -1.4372 1.812

Kenya 1980:01-2007:10 334 2 -2.3725 0.966

Madagascar 1980:01-2007:10 334 1 -1.9043 8.045y

Malawi 1980:01-2007:10 334 2 -1.3723 3.857

Mauritius 1980:01-2007:10 334 12 -2.5105 1.741

Mexico 1980:01-2007:10 334 12 -3.6830��� 22.716y

Morocco 1980:01-2007:10 334 1 -4.4510��� 0.236

Paraguay 1980:01-2007:10 334 1 -1.5376 0.096

Peru 1980:01-2007:10 334 0 -2.6784� 40.029y

South Africa 1980:01-2007:10 334 11 -2.1588 1.030

Turkey 1980:01-2007:10 334 2 -2.3503 8.755y

Uruguay 1980:01-2007:10 334 12 -2.3618 1.616

Venezuela 1980:01-2007:10 334 0 -2.4544 3.066

Table 5: Estimated DF and Linearity Test Statistics for RER against the US Dollar
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Country Duration T p tDF WT

Asian emerging market

India 1973:01-1998:10 307 3 -1.1732 1.057

Indonesia 1973:01-1998:10 307 5 -0.1700 17.322y

Malaysia 1973:01-1998:10 307 0 1.3233 5.261y

Pakistan 1973:01-1998:10 307 0 -0.9783 1.231

Philippines 1973:01-1998:10 307 0 -2.8242� 26.798y

Thailand 1973:01-1998:10 307 0 -1.8190 9.072y

Other emerging market

Argentina 1973:01-1998:10 307 0 -2.4285 69.890y

Bolivia 1973:01-1998:10 307 0 -3.6346��� 49.978y

Chile 1973:01-1998:10 307 2 -4.9681��� 36.599y

Columbia 1973:01-1998:10 307 3 -1.1646 1.063

Cyprus 1973:01-1998:10 307 2 -2.6874� 2.044

Dominica Rep. 1973:01-1998:10 307 1 -1.9126 2.633

Equador 1973:01-1998:10 307 1 -1.4390 4.652y

Egypt 1973:01-1998:10 307 6 -4.9040��� 5.028y

El Salvardor 1973:01-1998:10 307 0 -1.6569 42.853y

Ethiopia 1973:01-1998:10 307 0 -2.3821 0.271

Kenya 1973:01-1998:10 307 1 -2.5974� 1.190

Mexico 1973:01-1998:10 307 0 -2.7611� 14.028y

Morocco 1973:01-1998:10 307 0 -1.4907 9.165y

Paraguay 1973:01-1998:10 307 1 -1.3271 1.490

Peru 1973:01-1998:10 307 0 -1.6184 3.394

South Africa 1973:01-1998:10 307 0 -3.6084��� 14.228y

Turkey 1973:01-1998:10 307 0 -2.2894 16.049y

Uruguay 1973:01-1998:10 307 0 -1.8358 5.226y

Venezuela 1973:01-1998:10 307 3 -1.6902 1.466

Table 6: Estimated DF and Linearity Test Statistics for BER against the US Dollar

appropriate.

Let us turn now to the black market exchange rate series. The results of the

standard tDF and the linearity test WT are shown in Table (6). The standard tDF
rejects the null in eight series out of twenty-�ve countries. Furthermore the linearity

test WT shows the same results as in the previous case. Thus more than half of the

series will be considered in the next section.

Note that hereafter, �,��,��� denote the 10%, 5% and 1% signi�cance levels, re-

spectively, T is the number of observations and p is the order of the autoregressive

terms included to account for additional serial correlation in the data.
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Symmetric Asymmetric

Country jcj j
j tSNL c1 c2 
1 
2 tASNL
Asian emerging market

India 0.2701 2886.3238 -1.7981 -0.3062 0.1498 457.4515 0.2886 -2.4539

Indonesia 0.4780 3.8123 -2.4427 -0.4780 0.1927 8.2800 0.2079 -3.0289�

Korea 0.1960 19.2553 -4.0005��� -0.1960 0.0519 25.7552 0.6469 -4.0325���

Malaysia 0.3470 3325.0853 -1.7474 -0.3470 0.1235 3325.0853 0.3325 -2.6176

Thailand 0.2998 11.8491 -1.9643 -0.2998 0.0959 15.8489 0.3981 -2.3189

Other emerging market

Algeria 0.7045 872.9211 -2.5138 -0.2580 0.2048 1417.4289 0.1417 -1.7449

Argentina 0.4663 4.1841 -3.9073��� -0.4663 0.1180 9.0874 0.2283 -4.0130���

Bolivia 0.4265 1.6055 -6.0403��� -0.4265 0.1326 1.4571 1.4571 -5.6817���

Burundi 0.4826 4.4667 -1.5385 -0.4826 0.1568 9.7013 0.2437 -1.6170

Columbia 0.1551 3349.2495 -1.9954 -0.1615 0.1353 3349.2495 0.3349 -2.1558

Dominica Rep. 0.2264 2.1225 -2.9368 -0.1940 0.1377 3053.0825 1.9264 -2.8523

El Salvardor 0.2131 3504.9674 -4.1643��� -0.2174 0.0484 0.5691 3.5909 -3.5780��

Guatemala 0.2304 4.1607 -2.7993 -0.2304 0.1129 14.6734 2.3256 -2.7500

Honduras 0.4188 5.7462 -5.0870��� -0.4188 0.0965 0.3134 1.9779 -3.9627���

Jamaica 0.2759 4.2589 -2.3892 -0.2759 0.0537 15.0197 2.3804 -2.3531

Madagascar 0.1595 558.9409 -1.9542 -0.1585 0.1936 379.2669 0.2393 �2.1119

Mexico 0.1913 5.8825 -4.2063��� -0.1913 0.0526 3.2880 3.2880 -4.1477���

Peru 0.5254 34.2456 -3.8879��� -0.5254 0.0971 10.6989 1.6956 -3.1809��

Turkey 0.1726 6.5206 -2.6542 -0.1482 0.0564 5776.4174 0.5776 -3.0397�

Table 7: Estimated Results for RER agianst the US Dollar

5.3 Application to The Real Exchange Rate

In this section we apply the symmetric and asymmetric nonlinear tests to the two

data sets of exchange rates analyzed above. Table (7) reports the empirical results.

We note that now in addition to the seven rejections obtained by the tDF , there

are two additional rejection obtained by the tSNL test. All these rejections occur at

the 1% level of signi�cance. In particular, while for countries like Argentina and

Peru rejections were at 10% level now all rejections are at the 1% signi�cance level.

Looking at the empirical results when an asymmetric adjustment is considered,

we note that there are now nine rejections. That is, there are two additional rejec-

tions that occur at the 10% signi�cance level for Indonesia and Turkey. Thus this

extension of the tSNL reveals evidence that supports long-run PPP that would not

have been detected by the application of the tSNL alone.

For all emerging market countries that we have considered, Table (7) shows that

the threshold range, c1; is wider in absolute value and the speed of adjustment, 
1;

is greater the lower the threshold. For example, Argentina shows lower and upper

thresholds of �0:4663 and 0:1180 respectively. This indicates a higher threshold
20



Figure 4: Symmetric CMK-STAR for RER
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Figure 5: Asymmetric CMK-STAR for RER
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Symmetric Asymmetric

Country jcj j
j tSNL c1 c2 
1 
2 tASNL
Asian emerging market

Indonesia 0.4097 1.5251 -0.7438 -0.4098 0.4117 1.3841 1.3841 -0.7286

Malaysia 0.0968 5202.3604 -1.2444 -0.1849 0.0598 0.5202 130.6773 0.5316

Philippines 0.1596 7.3134 -3.9706��� -0.1595 0.0454 4.0877 0.6478 -3.8151���

Thailand 0.0754 7534.9477 -2.0549 -0.0785 0.0388 1194.2087 29.9972 -2.1116

Other emerging market

Argentina 0.6033 5.0994 -4.2822��� -0.6033 0.1836 1713.3364 0.1713 -4.3831���

Bolivia 0.2722 3.4464 -4.6984��� -0.2721 0.0865 1.9264 0.3053 -4.6503���

Chile 0.3280 4.3052 -5.8482��� -0.3280 0.1243 2348.7630 0.2349 -6.3066���

Equador 0.3505 1105.9413 -1.9414 -0.3575 0.1195 11.6087 0.2916 -2.0263

Egypt 0.1335 3.4743 -5.8779��� -0.1335 0.0499 125.5331 0.4998 -6.4986���

El Salvardor 0.3772 134.2111 -2.8114 -0.3772 0.1397 61.7940 0.2460 -3.7975���

Mexico 0.3262 10.8116 -3.5277�� -0.3262 0.0814 14.4614 2.2919 -3.1889��

Morocco 0.2092 22.3533 -2.2342 -0.1493 0.0782 733.0452 2.9183 -2.1309

South Africa 0.1249 5968.2076 -4.2752��� -0.1449 0.0478 3.7656 3.7656 -4.0822���

Turkey 0.2407 4282.1032 -3.4631�� -0.2238 0.0883 4282.1032 0.4282 -3.4306��

Uruguay 0.2153 3285.5944 -2.1868 -0.2241 0.1178 82.5304 0.3286 -2.5256

Table 8: Estimated Results for BER agianst the US Dollar

tolerance for depreciations. The speed of adjustment is 0:2283 between the middle

and upper regimes and 9:0874 from the lower to the middle regime. This indicates

a quicker move between the corridor and the depreciation regimes than between the

appreciation regime and the corridor. This is consistent with previous results in

(e.g. Sollis et al. (2002)).

As shown in Figure (4) and Figure (5), the nature of symmetry and asymmetry

from estimated results can be best illustrated by plotting the values yt�1 against

�yt for the symmetric and asymmetric models respectively. In particular, all �gures

consistently show that when the rate is below the mean it shows rather faster mean

reversion than when the rate is above the mean.

5.4 Application to Black Market Exchange Rates

To further investigate nonlinearity and asymmetry in exchange rate dynamics, we

now use the black market exchange rate data set. Since non-linearity was detected

in six out of eight series, in this application we have also included them. We now,

additionally, reject the unit root null hypothesis in two countries, Argentina and

Turkey.

We turn now to the asymmetric test. We note that in addition to the eight

rejections obtained by the tSNL test, there is one additional rejection obtained by the
23



tASNL. This rejection occurs at the 1% level of signi�cance (El Salvardor). Thus this

extension of the tSNL test reveals evidence that support long-run PPP that would

not have been revealed by the application of the tSNL test alone.

Table (8) shows that the threshold range c1 is wider in absolute value and the

speed of adjustment 
1 is greater in the lower threshold. As an example of this,

El Salvardor has lower and upper thresholds of �0:3575 and 0:1195; respectively.
This result implies a higher threshold tolerance for depreciations. The speed of

adjustment is 0:2916 between the middle and upper regimes, and 11:6087 from the

lower to the middle regime. This indicates a quicker movement between the corridor

and the depreciation regimes than between the appreciation regime and the corridor.

These results are consistent with the RER models suggested in the literature.

Figure (6) and (7) con�rm that when exchange rates are below their mean, the

value of �yt is higher than when they are above their mean. Interestingly, the

applications of asymmetric models to both the data sets consistently supports the

argument that when the exchange rate is depreciated tend to defend the currency

more vigorously.

5.5 Application to OECD data

To compare emerging market with developed countries, we now test the quarterly

OECD countries data set. In this application, there are four rejections obtained by

the tSNL test.
4 We note that there are only one additional rejection obtained by the

tSNL test. All these rejections occur at the 5% level of signi�cance.

In the asymmetric test, we note that in addition to the four rejections obtained

by the tSNL test, there are seven additional rejections obtained by the t
AS
NL test. Most

of these rejections occur at the 5% level of signi�cance and only Netherland rejects

the hypothesis at the 10% level. The additional seven countries would not have

been shown by the application of the linear test, tDF or symmetric test, tSNL. In

particular, this extension of the tASNL test reveals evidence that supports long-run

PPP more than half of the data set.

Looking at the Table (9) when asymmetric test is considered, as shown in previ-

ous tests, the results show that the threshold range c1 is generally wider in absolute

value except Finland and the speed of adjustment 
1 is consistently greater in the

lower threshold. For example, while only Finland has lower and upper thresholds of

�0:0539 and 0:0912; respectively and upper threshold c2 is slightly wider in absolute
value, other results are consistently wider in lower threshold, which implies higher

4We use quarterly data for twenty OECD economies, which covers 1973:1-1998:2. In a prelimi-
narly test, three rejections obtained by the Dickey-Fuller test:
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Figure 6: Symmetric CMK-STAR for PER
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Figure 7: Asymmetric CMK-STAR for PER
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Symmetric Asymmetric

Country jcj j
j tSNL c1 c2 
1 
2 tASNL
Australia 0.1393 7665.5241 -2.1256 -0.1393 0.0331 192.5492 0.7665 -2.0108

Austria 0.1009 5916.4187 -2.8744 -0.1185 0.0552 5916.4187 0.5916 -3.3511��

Belgium 0.1033 5319.4397 -2.4927 -0.1212 0.0686 5319.4397 0.5319 -2.7931

Canada 0.0379 10418.4460 -1.7350 -0.0511 0.0303 1651.2124 1.0418 -1.7691

Denmark 0.0463 5909.9979 -2.4605 -0.0482 0.0589 936.6715 0.5910 -2.9252

Finland 0.0591 7013.7319 -3.3056�� -0.0539 0.0912 7013.7319 4.4253 -3.2300��

France 0.1389 6467.9852 -2.6823 -0.1416 0.0382 6467.9852 0.6467 -3.3699��

Germany 0.0348 6092.5821 -2.7250 -0.1133 0.0509 965.6091 0.6092 -3.2510��

Greece 0.0882 6287.4421 -2.5335 -0.1246 0.0453 6287.4421 0.6287 -2.8086

Ireland 0.0987 7806.6516 -3.0078 -0.1323 0.0386 31.0788 0.7806 -3.3801��

Italy 0.1331 7.6023 -2.6402 -0.1142 0.0465 6734.6729 0.6734 -2.8704

Japan 0.1531 4237.2333 -2.4163 -0.1439 0.1175 106.4344 2.6735 -2.2747

Netherland 0.0283 6222.7671 -2.7111 -0.0896 0.0424 6222.7671 0.6222 -3.0821�

New Zealand 0.1451 1.8134 -3.3679�� -0.0423 0.0392 1090.0543 4.3395 -3.4825��

Norway 0.0898 5096.0317 -2.6771 -0.0934 0.0322 207.8540 0.8275 -3.3408��

Portugal 0.1961 3142.2792 -2.1374 -0.2001 0.0642 5102.3599 0.5102 -2.5451

Spain 0.0508 5328.2922 -2.5063 -0.1837 0.0488 21.2123 0.5328 -2.7186

Sweden 0.1731 846.2946 -2.9879 -0.1731 0.0444 147.7838 0.5883 -3.6004��

Swiss 0.1684 5244.4175 -3.6096�� -0.1909 0.0620 131.7338 3.3090 -3.4299��

U.K. 0.0873 7315.9827 -3.5523�� -0.1356 0.0395 29.1254 0.7315 -3.7958��

Table 9: Estimated Results for OECD RER agianst the US Dollar

tolerance for depreciations and quicker movement between the corridor and the de-

preciation regimes. These results are the same as the RER and BER for emerging

market provided in previous tests.

In Figure (8) and Figure (9), the properties of symmetry and asymmetry are

graphically shown when exchange rates are appreciated or depreciated. Particularly,

as shown in emerging market cases, all �gures in Figure (9) except Finland show that

when the rates of OECD countries are below the mean it shows rather faster mean

reversion than the rate is above mean. This implies that the "dread of depreciation"

is also applicable in OECD countries and not just in emerging market economies.

6 Conclusion

In this paper we have re-examined the PPP hypothesis using non-linear modelling

methods. Although such modelling has become increasingly popular of late, we o¤er

a number of novel features in our own work. First, we use more general STAR tran-

sition functions than have been used hitherto in the literature and these functions

encompass both threshold nonlinearity and asymmetric e¤ects. Our framework al-
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Figure 8: Symmetric CMK-STAR for OECD RER

lows for a gradual adjustment from one regime to another, and considers threshold

e¤ects by encompassing other existing models, such as TAR models. Second, we

present Monte Carlo simulations which show that our test has good size and power

properties. Finally, we apply the proposed test to three di¤erent exchange rate data-

sets, one for developing countries, using o¢ cial nominal exchange rates, the second

consisting of a unique data set of emerging market economies using a black market

exchange rates, and the third consisting of quarterly OECD data.

Our results provide evidence suggesting that for the majority of currencies, the

asymmetric STAR model characterizes well deviations from PPP. Also our empirical

results supports what Dutta and Leon (2002) call the "dread of depreciation" in

emerging markets. Our results are consistent with previous studies that consider

the role of transaction costs in international market arbitrage, although we have

used a less restrictive framework than other researchers to obtain our results.
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Figure 9: Asymmetric CMK-STAR for OECD RER
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