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Cloud  
Datacenters

Equity and  
Fairness

Cyber-physical  
Energy  

Systems

Solar PV Performance Modeling and  
Forecasting: BuildSys’20, MASS’20. 
Programmable Networked Energy  
Systems: BuildSys’17, BuildSys’18,  
IGSC’20, COMPASS’20. 
Electrification in Sub-Saharan Africa:  
COMPASS’20, e-Energy’19. 

Sustainable Computing
Sustainable Computing - Without the Hot Air:  

HotCarbon’22. 

Ecovisor: A Virtual Energy System for Carbon-  
efficient Applications : SoCC’21, ASPLOS’23.

CarbonScaler, Acclimator, Delen: Under-review at  
EuroSys’23, SIGMETRICS’23, IoTDI’23. 

Resource Overcommitment in Google’s 
Datacenters: EuroSys’21.

Cost and Wait-time Optimization for Hybrid Cloud  
Datacenters: SC’20, IC2E’20, SoCC’21.

Non-intrusive Power Monitoring in Cloud Datacenters:  
 Under-review at SIGMETRICS’23.

Research Overview 

Equity-aware Energy 
Transition

Residential Heating Decarbonization:  
BuildSys’22.
Network- & Equity-aware Gas Network 
Decarbonization: Under-review at Energy 
Informatics Review and e-Energy’23.

Fair Control of Distributed Solar 
Capacity: BuildSys’17.



Noman Bashir - University of Massachusetts Amherst 
Appeared at HotCarbon’22

Sustainable Computing - Without the Hot Air*
* Title inspired by the book Sustainable Energy - Without the Hot Air
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• Society continues to find useful applications 
Computing’s Demand is Growing Exponentially

PowerBook  
100

Intel Pentium 
Microprocessor

Earth Simulator  
Supercomputer

AWS is Launched

Iphone, Macbook

RankBrain 
is Announced

Source: “Unimaginable Output: Global Production of Transistors” - Darrin Qualman 

Rise of AI
Rise of Smartphones

Client/Server Computing
Web-based Apps

Pervasive 
Computing Era

Smart Transportation
Smart Cities
Precision Agriculture

Every Imaginable 
Aspect of Life
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Demand Accelerating 
vs  

Energy-efficiency Gains Slowing Down
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• Most optimistic estimates suggest 6% increase 
from 2010-2018
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pessimistic

Efficiency Gains are Not Enough: Data Center Energy Consumption Continues to Rise Significantly - Ralph Hintemann (2018)
Recalibrating Global Data Center Energy-use Estimates - Eric Masanet (2020)
EPA Report to Congress on Server and Data Center Energy Efficiency (2007)

predictions

estimates
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Shift from Traditional Datacenters to Cloud

Source: Global data centre energy demand by data 
centre type, 2015-2021 - IEA


PUE: ~1.57 PUE: ~1.1
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• Energy’s carbon efficiency in the US has improved 
by 45.6% over 2001-2017

Grid’s Carbon Intensity Has Been Decreasing
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2.33% increase in Carbon-efficiency 
0.65% increase in Energy Demand

 -> 1.64% decrease in Carbon Footprint

Computing′ s Carbon Efficiency = Computing′ s Energy Demand
Energy′ s Carbon Efficiency

Source: Ember Global Electricity Review (2022) 
Source: BP Statistical Review of World Energy 
Source: Ember European Electricity Review (2022)

•What if optimistic estimates are 
incorrect? 
•How about the rest of the world?
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Carbon Footprint = 
Cycles per Unit Work x Total Units of Work

Computing’s Energy Efficiency x Energy’s Carbon Efficiency

[bounded]

Algorithmic Efficiency can be 
further improved, but has limits

Industry has strong incentive to 
improve  the algorithmic efficiency

Recent focus on ML training 
and Crypto-mining

[bounded]

[Koomey’s Law: Energy efficiency 
doubles every 1.5-2.6 years] 

transition to cloud, dedicated hardware

[Laundar’s Principle: Theoretical limit 
to be reached in 2050, practical sooner]

[Jevon’s Paradox: Historically, gains in 
efficiency have not reduced demand]

[unbounded]

Datacenter capacity increased 
by 6X from 2010-2018

Crypto-mining and ML demand is 
outpacing Moore’s law 

Industry has strong incentive to 
maintain and accelerate growth

[unbounded]

Zero-carbon energy means carbon 
efficiency can be infinite

Industry has helped subsidize 
zero-carbon energy
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• Carbon offsets: offset carbon-intensive grid 
energy with the use of zero-carbon energy at 
another location and time 

Carbon Accounting and Attribution Methods

Loosest StrictestStricter
Carbon-neutral 
since inception

Annual, location-
agnostic

24
/7
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Zero 
Carbon 
Grid

• Google aims to be “Carbon 
Free” by 2030 

• Piloted “Time-based Energy 
Attribute Certificates (TEACs)” 

• Matching on the same grid in 
the same hour of the day

• 24/7 matching is not the panacea 
• Carbon emissions should be attributed to all loads 

based on their energy consumption 
• You are carbon free when society is carbon free

All Carbon Offset Subsidize Renewable Energy, 
But Stricter the Carbon Offset, the Better

Good Better BestAndrew Chien’s

• Subsidize the adoption of renewable 
energy across the world 

• Still cause significant amount of direct 
carbon emissions
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• Your embodied is someone else’s 
operation


• Incentivizes buying less or buying 
different

• Carbon emissions from producing products or services, 
e.g., buildings facilities, manufacturing servers 

Accounting for and Reducing Embodied Carbon

Embodied Operational

• Operational is completely under 
your control


• Operational emissions are not a 
solved problem


• Embodied and operational emissions are NOT additive

• One is NOT more important than the other 
• Focus on embodied can distract from operational
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Implications for Sustainable Computing 

Carbon  
Intensive  

Grid

Carbon  
Free  
Grid

• “Carbon-free”, “carbon-neutral”, 
“zero-carbon”, “100% renewable” 
mean different things 

• Confusing terminology gives false 
impressions

Pre-requisite

Clarify Misunderstandings

• WattTime and electricityMap  
• Average vs marginal carbon?

Enable Visibility into Carbon

• No direct nor financial incentive 
• Indirect incentive exist

Shift “Focus” from Energy to Carbon

• Change how we operate 
• Use computing to balance grid

Leverage Computing’s Flexibility
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• Operational carbon footprint - NOT a solved problems

• Problem is going to GET WORSE 
• Offsets are good, but NOT the panacea

• Embodied and Operational are NOT additive

• Operational is under our DIRECT CONTROL 
• Leverage computing’s flexibility

Key Takeaways



Noman Bashir - University of Massachusetts Amherst

To appear at ASPLOS’23

Ecovisor: A Virtual Energy System for 
Carbon-efficient Applications
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• Carbon intensity variation: less than 50g to more than 800g across time and 
geographical regions. 

Clean Energy is Variable and Unreliable 

Source: electricityMap 13
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More regions in the world would look like Ontario in near future.



Energy’s Reliability Abstraction Limits Computing’s Potential
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Job 
arrives

run immediately

run later

run slower

run intermittently

run faster

run elsewhere

t = 0 time

Computing’s Unique Advantages Grid’s Reliability Abstraction

Power Socket



Ecovisor: A Virtual Energy System for Carbon-Efficient Applications 
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Reliability 
Abstraction
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Ecovisor: Design and API
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Control Power Supply 
and Demand

Get Energy System 
Information

Asynchronous  
Notifications



Ecovisor: Design and API
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Control Power Supply 
and Demand

Get Energy System 
Information

Asynchronous  
Notifications



Ecovisor: Prototype Implementation
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• Software: REST API

- Access to energy APIs and electricityMap

- Extends LXD; wraps LXD server


• Hardware: small-scale prototype

• Reducing carbon (ML training, MPI)

- System (WaitAWhile - Middleware’21)

- App-specific (Wait&Scale - under review)


• Budgeting carbon (web server)

- System (rate limiting)

- App-specific (budgeting)


• Leveraging batteries (web server, Spark)

- System (static power)

- App-specific (dynamic power)


• Leveraging solar (MPI, straggler)

- System (equal)

- App-specific (progress-based)



Ecovisor: Optimizing Carbon/Performance Trade-off
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• System (WaitAWhile - Middleware ‘21) versus 

Application-specific (Wait&Scale) policy
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PyTorch ML Training

Under-review work on leveraging 
workload elasticity.

Embarrassingly parallel job.

BLAST



Ecovisor: Carbon Budgeting
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• System (carbon rate-limiting) versus Application-
specific (carbon budgeting) policy

Key Point: Application-
specific carbon budgeting 
provides useful flexibility




Conclusion 
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• Key Point: Many carbon-efficiency optimizations possible if applications have 
visibility/control


• Ecovisor exposes useful functions to enable carbon-efficient 
applicationsAccess to energy APIs and electricityMap


• A Foundation for developing new abstractions to simplify developing carbon-
efficient applications.


• Ongoing Work: Exploiting flexibility to reduce carbon; developing new 
abstractions for ecovisor




21

Links 
• CarbonFirst: http://carbonfirst.org/ 
• Personal Webpage: https://noman-bashir.github.io/


Collaborators

• UMass: Abel Souza, Walid Hanafy, Qianlin Liang, Jorge 

Murillo, David Irwin, Prashant Shenoy, Ramesh Sitaraman, 
Mohammad Hajiesmaili


• Caltech: Adam Wierman

• WPI: Tian Guo


