

Science & Technology Facilities Council

The Dynamic Sun

lain G. Hannah iain.hannah@glasgow.ac.uk http://www.astro.gla.ac.uk Lyndsay Fletcher, Eduard Kontar, Nicolas Labrosse, Alec MacKinnon, Hamish Reid, Enrique Perez, Nicolas Bian, Natasha Jeffrey, Paulo Simoes & many students SDO/AIA EUV 171Å 1,000,000 K Coronal Emission

Filament/ Prominence

> Hot Coronal Loops

Active Regions

> Flaring Active Region 12192

19 -24 Oct 2014

What are these phenomena?

- All due to solar magnetism
 - Associated with active regions/sunspots
 - But cannot observe the detailed magnetic field changes
- How is the energy so rapidly & efficiently released from the magnetic field ?
 - Into heating, particle acceleration, waves, eruptions
- What are the quantitative details/physics?
 - In flares, prominences/filaments, coronal mass ejections (CMEs)

Simplified flare picture


```
Introduction
```

How do we do study this?

- Multi-messenger astronomy
 - Combining together multi-wavelength and particle data
 - Substantial amounts of (big) data from ground & space
 - Use advanced spectral fitting, image processing, feature recognition, image reconstruction techniques
- Models/Simulations
 - From back of envelope calculations to supercomputers
 - Simulating transport and response of atmosphere
 - Does it match the multiple observed signals?
 - What physical processes dominate?
 - What physics are we missing?

Dynamic Sun - I. G. Hannah

Why study these phenomena?

- Learn how Sun & stars work
 - Applicable to laboratory and astrophysical plasmas
- Space Weather & Solar Storms
 - Expensive threat to us & our tech
 - UK risk register: 4th most important
 - Met Office Space Weather Operations Centre
 - Big events & regular strain
 - <u>Flares:</u> immediate -> radio/GPS
 blackout
 - <u>CMEs:</u> few days later -> satellite/ spacecraft & power grid damage

X-rays: RHESSI & NuSTAR

- X-rays: hottest material and accelerated electrons in flares
 - Glasgow leading for >40 years (Brown 1971)
- NASA's RHESSI Imaging Spectrometer
 - Observed >96,000 flares since 2002 launch
 - High spatial, energy & temporal resolution
 - Rotation Modulation Collimators
 - Indirect imaging -> image reconstruction
- NASA's NuSTAR astrophysics mission
 - Highly sensitive direct imager of HXR
 - Launched 2012
 - Just started solar observations

Current Projects

Radio: LOFAR

- Radio: electrons ejected outwards, producing plasma waves & radio emission
- LOw Frequency Array of interferometry radio telescopes across Europe (10 -240 MHz)
 - Solar obs using LOFAR Core in the Netherlands
 - Incredibly high temporal & frequency resolution
- Substantial computing task to correlate & reconstruct the data

Reid

Radio: Radio Sun & Glasgow

- Radiophysics of the Sun
 - FP7/Marie Curie International Research Staff Exchange Scheme
 - EU (Warwick, Glasgow, Czech Republic, Poland), Russia (Pulkovo, Irkutsk), China (Beijing)

Dynamic Sun - I. G. Hannah

Current Projects

F-CHROMA

Flare Chromospheres: Observations, Models and Archives

- 7-institute, €2.4M EC-funded project
 GU-Led: Lyndsay Fletcher PI
- Focused study of physical processes in the chromosphere during flares
 - The dense solar atmosphere
- Why the chromosphere?
 - Most complicated, many physics puzzles
 - Source of most of a flare's radiation
 - Rich in plasma diagnostics
 - Can illuminate physics of energy transport & dissipation

Modelling & Simulations

- Electron beam & wave-particle interactions
 - Changes energy & generates radio emission
 - Run on local cluster and DiRAC II supercomputer

- RADYN simulation code:
 - Dynamics & emission from flare-heated solar atmosphere
 - Developed in Oslo & NASA/GSFC

ESA's Solar Orbiter/STIX

• Suite of remote and in-situ instruments (2017+)

Gets to <0.3 AU

- Glasgow has several science Co-Is on STIX X-ray telescope
 - PI: FHNW, Switzerland
 - RHESSI successor, imaging spectrometer 4 - 150 keV
- Glasgow also science Co-Is on
 - EUI: Extreme UV Imager
 - RPW: Radio & Plasma Waves

Future Projects

solar orbiter

Future Projects

X-ray Cubesat & Small Satellites ?

- For science and/or monitoring?
 - One example is MinXSS from LASP/CU Boulder (Jan 2015)
 - 3U Cubesat Grad Student X-ray spectrometer
 - Proposed followup of CubIXSS 6U X-ray imager

- MiXI from Berkeley/FHNW
 - Proposed Miniature X-ray Imager
 - Based on RHESSI & SO/STIX tech
 - X-ray Imaging spectrometer
 - Complements SO/STIX (2017+)

DKIST

- Daniel K. Inouye Solar Telescope
 - Biggest solar telescope: 4m primary mirror
 - Under construction on Haleakala mountain, Hawai'i (2019)
- Goals:
 - Measure the magnetic field in the Sun's corona
 - Study structure & evolution of the Sun's surface at a scale of 35km
 - Investigate solar dynamo & buildup of solar flares and ejections
- GU role on Science Working Group & camera proposal

26-Oct-2014, Fletcher

Summary

- Studying the Sun important scientifically, economically & politically
- Need to combine multi-messenger space and ground based observations with modelling/simulations
 - Glasgow group and our collaborations at forefront
 - This talk just a brief summary doing other things as well
- Our work is driving direction of future observations
 - New space and ground based telescopes
 - Small satellite opportunities for science & monitoring
- http://www.astro.gla.ac.uk