

Searching for life in impact structures: stable isotope geochemistry and mineralogy of postimpact hydrothermal deposits of the Rochechouart structure

Sarah Simpson, MSc candidate Advisors: Prof. Martin Lee and Dr. Paula Lindgren

School of Geographical and Earth Sciences University of Glasgow S.Simpson.1@Research.gla.ac.uk

October 28, 2014

Life in extreme environments

"Extremophile: an organism that is tolerant to environmental extremes and that has evolved to grow optimally under one or more of these extreme conditions*"

...ie. "unusual" conditions - no sunlight, highly acidic/alkaline, very cold/hot, etc...

Hydrothermal systems: thermophiles/thermoacidophiles, sulphur reducers, halophilic, chemosynthesizers or endoliths (few ex.)

- Provides heat + volatiles + chemical nutrients = suitable environment for life (not always!)
- · Hot springs/vents, MOR "black smokers", volcanoes.

http://cdn.zmescience.com/wp-content/uploads/2010/08

http://artsandsciences.colorado.ed

Finding (microbial) life in rocks

http://www.geomicro.ethz.ch/research

http://www.mindat.org/photo-115782.html

Geochemistry and mineralogy: stable isotopes and <u>crystal habit</u>.

- Can find biosignatures in minerals, especially carbonates and sulphides, metals.

Microfossils: endoliths, stromatolites.

Petrology: know your minerals, know your environment!

Impact-generated hydrothermal systems

Heat source melt, uplifted geothermal gradient.

Shocked minerals highly unstable and reactive. Complex chemistry.

Shocked rocks porosity, fractures.

Water source depends on target. Surface liquids and ices, hydrated mineral phases.

Longevity varies, few hundred to million years. Retrograde.

Brings heat/energy to tectonically "dead" bodies

Evidence on Mars

Ideal candidates

Rocky/terrestrial planets and satellites Need solid surface, rocks hold heat (ie don't look to Jupiter or Neptune).

Evidence for volatiles and/or volcanism

Ice, liquids, hydrated mineral phases (water, SO2, CO2, phyllosilicates). Complex chemistry, ie. Mars.

How do we study them?

Mars exploration – Rovers, CRISM (spectroscopy) hydrated mineral phases. Very "young" science.

Terrestrial analogues – use ground truths on Earth to better understand how these systems work on other bodies.

Problems with studying impacts on Earth – Earth is active and crust is recycled. Older, larger impacts preserved only in cratons.

Water and life in Earth impact structures

Ries, carbonate target – colonization in impact glasses.

Haughton, mixed sed-xline – S stable isotopes in hydrothermal breccias, reduction of target sulphate by thermophilic microbes.

Areas of fluid flow and heat – can be pervasive, can be localized, porous lithic breccias, fractured basement, central uplift, melt

Case Study: The Rochechouart impact structure

201 +/- 2 Ma 23km diameter impact structure in France (Schmeider 2010).

Target crystalline, shoreline of Aquitaine basin and Central Massif (Lambert, 1977 and 2010)

Previous authors noted hydrothermal overprint

None to little crater morphology preserved

Sulphates, carbonates and sulphides

- Lithic breccias and vesicular melt, barite, dolomite, calcite, pyrite, chalcopyrite, siderite.

Questions

1) Primary water source for hydrothermal activity?

2) Which areas of structure/lithologies are ideal to support life?

3) Sulphides and carbonates source? Inherited from target material or contain biosignatures?

...and how to answer them

Secondary mineral assemblages observe, classify and interpret. Geochemistry.

Stable isotopes secondary minerals in impactites and target analysis, δ 34S δ 13C and δ 18O, sulphides and carbonates.

Stable isotopes

Those isotopes of elements which are not radioactive.

Differences in mass affect behavior partition into different phases – gas, liquid, high pressure, high temperature, etc...based on mass.

Kinetic fractionation

Biological processes (ie metabolic pathways) **Most common** Oxygen, carbon, sulphur, hydrogen.

February 2014δ34S stable isotope analysis of sulphides – monomict lithic
breccia

 δ^{34} S of major geologic reservoirs, modified from Seal et al (2000a) and Hoefs (2009), including values of Rochechouart sulphides. All values in permil (VCDT).

February 2014

University of Glasgow

 δ 13C and δ 18O stable isotope analysis of sulphides and carbonates

 δ^{13} C of important geologic and environmental reservoirs, including range of Rochechouart carbonates extracted from lithic breccias, dolomite and calcite, for comparison. All values in permil (VPDB). Modified from Hoefs (2009).

δ18O Averages (VSMOW) Calcite: 25 ‰ Dolomite: 24.4 ‰

δ13C Averages (VPDB)

Calcite: -11.2 ‰ Dolomite: -10.8 ‰

Impact structures are open systems!

In Rochechouart... Isotopes inherited from target? Variety of geologic events recorded. Compare to target material.

Paleogeographic influences: Proximity to sea

Target was on a shoreline - shock fractured basement extend to nearby sea? Mechanics of impacts.

Did seawater infiltrate and sulphate metabolized by organisms in hydrothermal systems?

Impact structures proven to be suitable habitats for life on Earth... Next steps:

Lots of comparative isotope work...

What was source of fluid? T constraints? Was there life?

Ongoing work on structures suitable as Mars analogues

Thanks to

Barringer Fund for Meteorite Impact Research

Dr. Philippe Lambert

Réserve Naturelle de l'Astroblème de Rochechouart Chassenon

Scottish Universities Environmental Research Center (SUERC)

Sarah Simpson, MSc candidate. 2014