

28 Oct 2014 Space Glasgow Research Conference

A DEFORMATION MODEL OF FLEXIBLE, HIGH AREA-TO-MASS RATIO DEBRIS FOR ACCURATE PROPAGATION UNDER PERTURBATION

Sittiporn Channumsin

Outline

- Background
- Objective
- >The model
- Simulation
- **Results**

Conclusion and Future work

University | School of of Glasgow | Engineering

Space Debris

Space debris

- Artificial debris and natural debris.
- Orbit with hypervelocity that can threat to active spacecraft leading to catastrophic break-ups generating new space debris
- Need to reduce the number of debris.

Experiment

Gravity movie

Space debris

28 Oct 2014

2014

S. Channumsin

log A/M (m²/kg

Figure 17 Area-to-Mass Ratio from Shot F (Murakami, J., et al 2008)

5

Collision and explosion

- Fengyun1-C

250

200

150

100 -

ncoming projectile

Incoming projectile

Figure 4 Test Conditions

Shot R

Discovery in 2004 (GEO)

Discover HAMR objects

- -High area-to-mass ratio (HAMR) objects
- -Variations of light curves
- -Variations of area-to-mass ratio (AMR)

- Iridium 33 and Cosmos 2251

(Anselmo, L. and C. Pardini, 2010)

Experiment

Fig. 2. A/M distribution of the C

- Shot micro satellite model

250

200

150

100

log __A/M [m²/kg]

Figure 18 Area-to-Mass Ratio from Shot R

Suspected objects

Multi-layer insulation

Objective

- **1.** Develop a model of a thin, highly flexible MLI-type membrane, in terms of multi-body dynamics, and solved by using fundamental Newtonian mechanics
- 2. Investigate the orbital dynamics under J2 and the lunisolar third body gravitation and solar radiation pressure (SRP) by comparing with rigid body case
- **3.** Investigate a self-shadowing effect to the orbital dynamics of flexible debris

flexible model

The flexible model

University | School of of Glasgow | Engineering

Flat plate

University School of of Glasgow Engineering

Simplification

Dimension 1 x 1 square meter $I_1 = I_2 = 0.5$ (m)

V

Simplification

Triangular shape

Torsional Damper

Х

y

28 Oct 2014

Multibody dynamics

Newtonian equation

$$F_i + T_i + F_{s,i} + F_{d,i} = m_i a_i$$

Where i = mass of each (1,2 and 3)

Spring and damper forces

$$F_{s} = k_{s}\theta \qquad F_{d} = c \ \dot{\theta}$$
$$k_{s} = \frac{EI}{Length} \qquad c = DF\sqrt{Mk_{s}}$$

Where

 k_s = rotational spring constant,

 θ = angle of deformation

- $\dot{\theta}$ = angular velocity of the deformation,
- E = young modulus

I = the moment of inertia of thin plate

Length = the length of each rod and is

C = Coefficient of torsion spring (N.m rad⁻¹)

DF = dissipation factor of material

M = mass of rod (Kg)

Torsional Damper m_1 m_2 m_3 Torsional spring

Constrained equation

$$(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 + (z_{i+1} - z_i)^2 = l_i^2$$

- Length of a rod = 0.5 m

Simulation of the model

Initial shape to test the model

Validation of spring

The simulation results without external force and damper by activating torsional spring

28 Oct 2014

The simulation with torsional spring and damper

Orbital dynamics and Perturbation

The modified equinoctial elements

$$\begin{split} \dot{p}_{i} &= \frac{2p}{w} \sqrt{\frac{p}{\mu}} \Delta_{i,i} \\ \dot{f}_{i} &= \sqrt{\frac{p}{\mu}} [\Delta_{i,r} \sin L + [(w+1)\cos L + f] \frac{\Delta_{i,i}}{w} - (h \sin L - k \cos L) \frac{g \Delta_{i,n}}{w}] \\ \dot{g}_{i} &= \sqrt{\frac{p}{\mu}} [-\Delta_{i,r} \cos L + [(w+1)\cos L + g] \frac{\Delta_{i,i}}{w} - (h \sin L - k \cos L) \frac{f \Delta_{i,n}}{w}] \\ \dot{h}_{i} &= \sqrt{\frac{p}{\mu}} \frac{s^{2}}{2w} \cos L \Delta_{i,n} \\ \dot{h}_{i} &= \sqrt{\frac{p}{\mu}} \frac{s^{2}}{2w} \cos L \Delta_{i,n} \\ \dot{k}_{i} &= \sqrt{\frac{p}{\mu}} \frac{s^{2}}{2w} \cos L \Delta_{i,n} \\ \dot{L}_{i} &= \sqrt{\mu p} (\frac{w}{p})^{2} + \frac{1}{w} \sqrt{\frac{p}{\mu}} (h \sin L - k \cos L) \Delta_{i,n} \end{split}$$

Where \mathcal{L} = gravitational constant

- ω = argument of perigee
- Ω = right ascension of ascending node degree
- e = eccentricity
- V = true anomaly
- a = semi-major axis(km)

i = Inclination

p = semi-parameter

- L = true longitude

28 Oct 2014

S. Channumsin

J2 perturbations

$$a_{j2,I} = \frac{\partial R_2}{\partial x_I} = -\frac{3\mu J_2 R_{\oplus}^2 x_I}{2x^5} (1 - \frac{5x_K^2}{x^2})$$

$$a_{j2,J} = \frac{\partial R_2}{\partial x_J} = -\frac{3\mu J_2 R_{\oplus}^2 x_J}{2x^5} (1 - \frac{5x_K^2}{x^2})$$

$$a_{j2,K} = \frac{\partial R_2}{\partial x_K} = -\frac{3\mu J_2 R_{\oplus}^2 x_K}{2x^5} (3 - \frac{5x_K^2}{x^2})$$

The third body

$$\vec{a}_{k} = -G\sum_{k=1,2}M_{k}\left[\frac{\vec{x} - \vec{x}_{k}}{\left|\vec{x} - \vec{x}_{k}\right|^{3}} + \frac{\vec{x}_{k}}{\vec{x}_{k}^{3}}\right]$$

Where k = 1 and 2 (Sun and Moon)

28 Oct 2014

Solar radiation pressure force

Solar radiation pressure force

Average solar radiation pressure

Rigid body case

Average SRP force

$$F_{avg} = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \vec{F}_{rad,j} d\lambda_s d\delta_s$$

Equivalent area

$$A_{eq} = \frac{F_{avg}}{P_{SP}(R)}$$

Where

$$P_{SP}(R) = \frac{E}{C} \frac{A_{\oplus}^2}{\left|\vec{x}_i - \vec{x}_{\oplus}\right|^2}$$

Therefore

$$F_{AVG} = -A_{eq} P_{SP}(R) \frac{\vec{x}_i - \vec{x}_{\oplus}}{\left\| \vec{x}_i - \vec{x}_{\oplus} \right\|}$$

Self-shadowing

$$p = l - \frac{d + n \cdot l}{n \cdot (v - l)} (v - l) \quad P$$

or P = Mv

$$M = \begin{bmatrix} n.l + d - l_x n_x & -l_x n_y & -l_x n_z & -l_x d \\ -l_y n_x & n.l + d - l_y n_y & -l_y n_z & -l_y d \\ -l_z n_x & -l_z n_y & n.l + d - l_z n_z & -l_z d \\ -n_x & -n_y & -n_z & n.l \end{bmatrix}$$

Where

p = the projection of vertex v

- v = Vertex on the plane : $n \cdot x + d = 0$
- l = a location of light source

The planar shadow projection, the original technique invented by Blinn [15], allows shadows to be cast on plane surface

Self-shadowing

Simulation

Material properties

Material type		AMR [m2/kg]	Young's Modulus [N/m2]	Cs, Cd, Ca
PET	coated	111.11	8.81x10 ⁹	0.60 0.26 0.14
Kapton	coated	26.30	2.50x10 ⁹	0.60 0.26 0.14
	uncoated	26.30		0.00 0.10 0.90

PET

Kapton

(Sheldahl, The red book (2012)

Initial position

Geosynchronous Earth orbit (GEO)

Six element	Value	
Semi-major axes(km)	42,164	
Mean anomaly(degree)	270°	
Argument of perigee(degree)	90°	
Ascending node(degree)	60°	
Eccentricity	0.0001	
Inclination(degree)	5°	

Propagation in 12 days

J2 and SRP

Orbital dynamics 12 days

PET

PET without self-shadowing

28 Oct 2014

S. Channumsin

PET with self-shadowing

S. Channumsin

University of Glasgow |

School of Engineering

Comparison

PET without self-shadowing

PET with self-shadowing

Orbital dynamics under J2, third body and SRP

Orbital dynamics 12 days

University | School of of Glasgow | Engineering

PET Euler angles

28 Oct 2014

S. Channumsin

Kapton Euler angles

28 Oct 2014

S. Channumsin

Conclusion and Future work

Conclusion

- 1. Orbital dynamics of flexible debris is different from that of rigid debris due to the effective area.
- 2. Direct solar radiation pressure is the most effect to the orbital dynamics of HAMR flexible model.
- 3. Self-shadowing effect lead to irregular attitude dynamics and deformation

Future work

To set the deformation experiment to validate the flexible model

Acknowledge

This work was funded by Ministry of Science and Technology of the Thai government and the European Office of Aerospace Research and Development (project award FA8655-13-1-3028).

Space Glasgow

www.glasgow.ac.uk/space

🥑 @SpaceGlasgow

Thank you

s.channumsin.1@research.gla.ac.uk